Properties

Label 4-3960e2-1.1-c0e2-0-2
Degree $4$
Conductor $15681600$
Sign $1$
Analytic cond. $3.90575$
Root an. cond. $1.40580$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 4·7-s + 16-s − 25-s − 4·28-s + 4·31-s + 10·49-s − 64-s − 4·73-s + 100-s + 4·112-s − 121-s − 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s − 4·175-s + 179-s + 181-s + ⋯
L(s)  = 1  − 4-s + 4·7-s + 16-s − 25-s − 4·28-s + 4·31-s + 10·49-s − 64-s − 4·73-s + 100-s + 4·112-s − 121-s − 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s − 4·175-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15681600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.90575\)
Root analytic conductor: \(1.40580\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15681600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.266038298\)
\(L(\frac12)\) \(\approx\) \(2.266038298\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 + T^{2} \)
good7$C_1$ \( ( 1 - T )^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$ \( ( 1 - T )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$ \( ( 1 + T )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.580414721650511879668141091532, −8.332597739475181929107133254285, −8.164318686580281447868451982385, −7.961816500586970972920250543258, −7.43773208708229555394699808320, −7.36518257735511160934061330984, −6.62835101086678887862020391294, −5.93729789456770226597164268036, −5.87011552526503377948278442886, −5.17147362267924256959092263516, −5.09413490146369778547891403753, −4.50394828099472526858382166202, −4.48338386408034951493369863720, −4.21384490743126231566117374288, −3.61688609705468385581572613931, −2.67413679028139330027831027805, −2.50981962471622191764769163691, −1.76413640980303348561429978669, −1.19201641050947408877953704260, −1.15558673807892511001808746899, 1.15558673807892511001808746899, 1.19201641050947408877953704260, 1.76413640980303348561429978669, 2.50981962471622191764769163691, 2.67413679028139330027831027805, 3.61688609705468385581572613931, 4.21384490743126231566117374288, 4.48338386408034951493369863720, 4.50394828099472526858382166202, 5.09413490146369778547891403753, 5.17147362267924256959092263516, 5.87011552526503377948278442886, 5.93729789456770226597164268036, 6.62835101086678887862020391294, 7.36518257735511160934061330984, 7.43773208708229555394699808320, 7.961816500586970972920250543258, 8.164318686580281447868451982385, 8.332597739475181929107133254285, 8.580414721650511879668141091532

Graph of the $Z$-function along the critical line