Properties

Label 4-3960e2-1.1-c0e2-0-1
Degree $4$
Conductor $15681600$
Sign $1$
Analytic cond. $3.90575$
Root an. cond. $1.40580$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 4·7-s + 16-s − 25-s + 4·28-s + 4·31-s + 10·49-s − 64-s + 4·73-s + 100-s − 4·112-s − 121-s − 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 4·175-s + 179-s + 181-s + ⋯
L(s)  = 1  − 4-s − 4·7-s + 16-s − 25-s + 4·28-s + 4·31-s + 10·49-s − 64-s + 4·73-s + 100-s − 4·112-s − 121-s − 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 4·175-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15681600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.90575\)
Root analytic conductor: \(1.40580\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15681600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5428506120\)
\(L(\frac12)\) \(\approx\) \(0.5428506120\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 + T^{2} \)
good7$C_1$ \( ( 1 + T )^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$ \( ( 1 - T )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$ \( ( 1 - T )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.812982482223015601622394317940, −8.635439420297348243659689296025, −8.069197698724880143985706539150, −7.86335525327547243594087859369, −7.23033937902870630758178903027, −6.76507104220192588980680516194, −6.58207218974627329522711917673, −6.28366043460594445186935420235, −6.02359901027962498270680217781, −5.58971411688820460309784520000, −5.18832742479788427609666569673, −4.37328754425237463248456331961, −4.32884756750620426229543927381, −3.71259277831989607516191508865, −3.30862581511211526808665064607, −3.19602483629408867223959706149, −2.60682931451682078377866780442, −2.27462517979186196670706891729, −0.899719447387035424950288718152, −0.56218169268051479198333510255, 0.56218169268051479198333510255, 0.899719447387035424950288718152, 2.27462517979186196670706891729, 2.60682931451682078377866780442, 3.19602483629408867223959706149, 3.30862581511211526808665064607, 3.71259277831989607516191508865, 4.32884756750620426229543927381, 4.37328754425237463248456331961, 5.18832742479788427609666569673, 5.58971411688820460309784520000, 6.02359901027962498270680217781, 6.28366043460594445186935420235, 6.58207218974627329522711917673, 6.76507104220192588980680516194, 7.23033937902870630758178903027, 7.86335525327547243594087859369, 8.069197698724880143985706539150, 8.635439420297348243659689296025, 8.812982482223015601622394317940

Graph of the $Z$-function along the critical line