| L(s) = 1 | − 7-s + 9-s + 8·11-s + 2·25-s − 12·29-s + 4·37-s + 49-s − 4·53-s − 63-s + 24·67-s + 8·71-s − 8·77-s + 16·79-s + 81-s + 8·99-s + 4·109-s + 4·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
| L(s) = 1 | − 0.377·7-s + 1/3·9-s + 2.41·11-s + 2/5·25-s − 2.22·29-s + 0.657·37-s + 1/7·49-s − 0.549·53-s − 0.125·63-s + 2.93·67-s + 0.949·71-s − 0.911·77-s + 1.80·79-s + 1/9·81-s + 0.804·99-s + 0.383·109-s + 0.376·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 395136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.120295274\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.120295274\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.794982359450167923789887590868, −8.204420559086206556134899851533, −7.73694030079543785567613120202, −7.12734401822485341175405975378, −6.81924134749275848987947664797, −6.36402506409128597376286431421, −6.01435317827498382717859862828, −5.33115285448310005780944318016, −4.81054544024340501455446265148, −4.02305041623616919160605193005, −3.80328204016342582460563312505, −3.36433690062115085321106139907, −2.32327110558899929025387741249, −1.68354813351536804100064609537, −0.864085438211432364167736092630,
0.864085438211432364167736092630, 1.68354813351536804100064609537, 2.32327110558899929025387741249, 3.36433690062115085321106139907, 3.80328204016342582460563312505, 4.02305041623616919160605193005, 4.81054544024340501455446265148, 5.33115285448310005780944318016, 6.01435317827498382717859862828, 6.36402506409128597376286431421, 6.81924134749275848987947664797, 7.12734401822485341175405975378, 7.73694030079543785567613120202, 8.204420559086206556134899851533, 8.794982359450167923789887590868