Properties

Label 4-38e2-1.1-c3e2-0-2
Degree $4$
Conductor $1444$
Sign $1$
Analytic cond. $5.02688$
Root an. cond. $1.49735$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 5·3-s + 12·5-s − 10·6-s + 16·7-s + 8·8-s + 27·9-s − 24·10-s + 18·11-s − 26·13-s − 32·14-s + 60·15-s − 16·16-s − 114·17-s − 54·18-s − 133·19-s + 80·21-s − 36·22-s + 78·23-s + 40·24-s + 125·25-s + 52·26-s + 280·27-s + 204·29-s − 120·30-s + 196·31-s + 90·33-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.962·3-s + 1.07·5-s − 0.680·6-s + 0.863·7-s + 0.353·8-s + 9-s − 0.758·10-s + 0.493·11-s − 0.554·13-s − 0.610·14-s + 1.03·15-s − 1/4·16-s − 1.62·17-s − 0.707·18-s − 1.60·19-s + 0.831·21-s − 0.348·22-s + 0.707·23-s + 0.340·24-s + 25-s + 0.392·26-s + 1.99·27-s + 1.30·29-s − 0.730·30-s + 1.13·31-s + 0.474·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1444\)    =    \(2^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(5.02688\)
Root analytic conductor: \(1.49735\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1444,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.735403532\)
\(L(\frac12)\) \(\approx\) \(1.735403532\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p^{2} T^{2} \)
19$C_2$ \( 1 + 7 p T + p^{3} T^{2} \)
good3$C_2^2$ \( 1 - 5 T - 2 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 12 T + 19 T^{2} - 12 p^{3} T^{3} + p^{6} T^{4} \)
7$C_2$ \( ( 1 - 8 T + p^{3} T^{2} )^{2} \)
11$C_2$ \( ( 1 - 9 T + p^{3} T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 p T + p^{3} T^{2} )( 1 + 7 p T + p^{3} T^{2} ) \)
17$C_2^2$ \( 1 + 114 T + 8083 T^{2} + 114 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 78 T - 6083 T^{2} - 78 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 204 T + 17227 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2$ \( ( 1 - 98 T + p^{3} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 334 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 177 T - 37592 T^{2} + 177 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 316 T + 20349 T^{2} - 316 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 492 T + 138241 T^{2} - 492 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 678 T + 310807 T^{2} + 678 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 579 T + 129862 T^{2} - 579 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 352 T - 103077 T^{2} - 352 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 755 T + 269262 T^{2} + 755 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 6 T - 357875 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 145 T - 367992 T^{2} - 145 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 17 p T + p^{3} T^{2} )( 1 + 13 p T + p^{3} T^{2} ) \)
83$C_2$ \( ( 1 + 567 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 114 T - 691973 T^{2} - 114 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2^2$ \( 1 - 943 T - 23424 T^{2} - 943 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.79344673072152904997313759790, −15.76774923889544842069056797012, −14.60973975809949612176928169533, −14.52408829033646498089762438057, −13.79477012140174774009642549862, −13.34512977626873638597211088267, −12.61974175118189989909971753823, −12.00217775923006031960173849819, −10.71420165249823358998415755773, −10.62611418324146687729592670656, −9.814875581255367554197956981493, −8.954429043077708115769500661252, −8.706774222914865863429419266714, −8.145497968852400726971723120636, −6.79763651794006797375943152556, −6.67426778657871342886957032830, −4.97008215825124048539788859130, −4.38639626357381357373537488245, −2.61049759785726038636040849688, −1.62139973029177866557976345889, 1.62139973029177866557976345889, 2.61049759785726038636040849688, 4.38639626357381357373537488245, 4.97008215825124048539788859130, 6.67426778657871342886957032830, 6.79763651794006797375943152556, 8.145497968852400726971723120636, 8.706774222914865863429419266714, 8.954429043077708115769500661252, 9.814875581255367554197956981493, 10.62611418324146687729592670656, 10.71420165249823358998415755773, 12.00217775923006031960173849819, 12.61974175118189989909971753823, 13.34512977626873638597211088267, 13.79477012140174774009642549862, 14.52408829033646498089762438057, 14.60973975809949612176928169533, 15.76774923889544842069056797012, 15.79344673072152904997313759790

Graph of the $Z$-function along the critical line