Properties

Label 4-38e2-1.1-c1e2-0-0
Degree $4$
Conductor $1444$
Sign $1$
Analytic cond. $0.0920706$
Root an. cond. $0.550846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·5-s − 4·7-s − 2·9-s + 8·11-s − 8·13-s + 4·16-s − 6·17-s − 4·20-s + 8·23-s − 3·25-s + 8·28-s + 4·29-s − 8·35-s + 4·36-s + 12·37-s + 4·41-s − 16·44-s − 4·45-s − 4·47-s − 49-s + 16·52-s + 8·53-s + 16·55-s − 14·61-s + 8·63-s − 8·64-s + ⋯
L(s)  = 1  − 4-s + 0.894·5-s − 1.51·7-s − 2/3·9-s + 2.41·11-s − 2.21·13-s + 16-s − 1.45·17-s − 0.894·20-s + 1.66·23-s − 3/5·25-s + 1.51·28-s + 0.742·29-s − 1.35·35-s + 2/3·36-s + 1.97·37-s + 0.624·41-s − 2.41·44-s − 0.596·45-s − 0.583·47-s − 1/7·49-s + 2.21·52-s + 1.09·53-s + 2.15·55-s − 1.79·61-s + 1.00·63-s − 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1444\)    =    \(2^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.0920706\)
Root analytic conductor: \(0.550846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1444,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5033013528\)
\(L(\frac12)\) \(\approx\) \(0.5033013528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 + T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5247104264, −19.1335612046, −18.1213987035, −17.4264315599, −17.4072402996, −16.7022471733, −16.5235345977, −15.2422541929, −14.6393155115, −14.5011418501, −13.5235052231, −13.3514918073, −12.5281782077, −12.0629600164, −11.3194473714, −10.2432044592, −9.55332854417, −9.18016854907, −9.08456140983, −7.62429229152, −6.44323514092, −6.39084306103, −5.03912355415, −4.15537276956, −2.82511261071, 2.82511261071, 4.15537276956, 5.03912355415, 6.39084306103, 6.44323514092, 7.62429229152, 9.08456140983, 9.18016854907, 9.55332854417, 10.2432044592, 11.3194473714, 12.0629600164, 12.5281782077, 13.3514918073, 13.5235052231, 14.5011418501, 14.6393155115, 15.2422541929, 16.5235345977, 16.7022471733, 17.4072402996, 17.4264315599, 18.1213987035, 19.1335612046, 19.5247104264

Graph of the $Z$-function along the critical line