Properties

Label 4-389-1.1-c1e2-0-0
Degree $4$
Conductor $389$
Sign $1$
Analytic cond. $0.0248029$
Root an. cond. $0.396849$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s + 5-s + 2·6-s − 3·7-s + 8-s + 2·9-s − 10-s + 4·11-s + 2·12-s + 13-s + 3·14-s − 2·15-s − 16-s − 2·18-s − 19-s − 20-s + 6·21-s − 4·22-s − 2·24-s + 25-s − 26-s − 6·27-s + 3·28-s + 2·29-s + 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.447·5-s + 0.816·6-s − 1.13·7-s + 0.353·8-s + 2/3·9-s − 0.316·10-s + 1.20·11-s + 0.577·12-s + 0.277·13-s + 0.801·14-s − 0.516·15-s − 1/4·16-s − 0.471·18-s − 0.229·19-s − 0.223·20-s + 1.30·21-s − 0.852·22-s − 0.408·24-s + 1/5·25-s − 0.196·26-s − 1.15·27-s + 0.566·28-s + 0.371·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 389 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 389 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(389\)
Sign: $1$
Analytic conductor: \(0.0248029\)
Root analytic conductor: \(0.396849\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 389,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1979862013\)
\(L(\frac12)\) \(\approx\) \(0.1979862013\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad389$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 10 T + p T^{2} ) \)
good2$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + p T + p T^{2} ) \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - T - p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 3 T + 6 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$D_{4}$ \( 1 + 4 T + 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$D_{4}$ \( 1 - 5 T + 28 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$D_{4}$ \( 1 + 3 T - 22 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$D_{4}$ \( 1 + T + 42 T^{2} + p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 6 T - 10 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 5 T + 60 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 9 T + 118 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 82 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$D_{4}$ \( 1 + T + 112 T^{2} + p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.6170191729, −19.3498183071, −18.6235408130, −18.1322059841, −17.4045507751, −17.1824093561, −16.5664957431, −15.9272149391, −15.2180879131, −14.1516609715, −13.6128208412, −12.7753631653, −12.2044917017, −11.4012010263, −10.6121010392, −9.77317652912, −9.28854322905, −8.58060022192, −7.05058226774, −6.34866827136, −5.47801220030, −3.96910734375, 3.96910734375, 5.47801220030, 6.34866827136, 7.05058226774, 8.58060022192, 9.28854322905, 9.77317652912, 10.6121010392, 11.4012010263, 12.2044917017, 12.7753631653, 13.6128208412, 14.1516609715, 15.2180879131, 15.9272149391, 16.5664957431, 17.1824093561, 17.4045507751, 18.1322059841, 18.6235408130, 19.3498183071, 19.6170191729

Graph of the $Z$-function along the critical line