| L(s) = 1 | − 5-s + 3·7-s − 8·11-s + 2·13-s − 2·17-s − 19-s + 7·23-s − 25-s + 9·29-s + 11·31-s − 3·35-s − 9·37-s − 6·41-s + 7·43-s − 15·47-s + 49-s + 17·53-s + 8·55-s − 8·59-s + 5·61-s − 2·65-s + 8·67-s + 5·71-s + 2·73-s − 24·77-s + 4·79-s + 2·83-s + ⋯ |
| L(s) = 1 | − 0.447·5-s + 1.13·7-s − 2.41·11-s + 0.554·13-s − 0.485·17-s − 0.229·19-s + 1.45·23-s − 1/5·25-s + 1.67·29-s + 1.97·31-s − 0.507·35-s − 1.47·37-s − 0.937·41-s + 1.06·43-s − 2.18·47-s + 1/7·49-s + 2.33·53-s + 1.07·55-s − 1.04·59-s + 0.640·61-s − 0.248·65-s + 0.977·67-s + 0.593·71-s + 0.234·73-s − 2.73·77-s + 0.450·79-s + 0.219·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.557518555\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.557518555\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.480766726803733953368794900411, −8.455277793345612872279255271037, −7.888846280462354815344771673510, −7.66927233073932585433915220459, −7.38972241993387254395217101416, −6.79156513440065187565930422136, −6.39571716960358292396130095748, −6.28789558406316010538134751947, −5.40314149433498952426544557921, −5.09095990260703691075230695664, −5.07728109767811729301974751155, −4.60238360285427010750523709214, −4.25792305691166914373057088648, −3.52345324409897028053804989326, −3.12672603001372809445376837137, −2.80171615332915873172819004271, −2.15820470945753519047378059442, −1.92787308369069984543900282859, −0.937290039658782137150622796630, −0.57071804065959510841952202243,
0.57071804065959510841952202243, 0.937290039658782137150622796630, 1.92787308369069984543900282859, 2.15820470945753519047378059442, 2.80171615332915873172819004271, 3.12672603001372809445376837137, 3.52345324409897028053804989326, 4.25792305691166914373057088648, 4.60238360285427010750523709214, 5.07728109767811729301974751155, 5.09095990260703691075230695664, 5.40314149433498952426544557921, 6.28789558406316010538134751947, 6.39571716960358292396130095748, 6.79156513440065187565930422136, 7.38972241993387254395217101416, 7.66927233073932585433915220459, 7.888846280462354815344771673510, 8.455277793345612872279255271037, 8.480766726803733953368794900411