| L(s) = 1 | − 10·13-s + 10·25-s − 2·37-s + 11·49-s + 28·61-s + 20·73-s + 38·97-s + 38·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 49·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
| L(s) = 1 | − 2.77·13-s + 2·25-s − 0.328·37-s + 11/7·49-s + 3.58·61-s + 2.34·73-s + 3.85·97-s + 3.63·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.361179749\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.361179749\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.665539042875274873056750348447, −8.416963170923571541082869928268, −7.75518421533519040946674359356, −7.52575193544606295970146718479, −7.13668568638155373234807499260, −7.04533586242340999746666343824, −6.42733369651222158320728151636, −6.25723759574105145418968551534, −5.48699053123705789383172323760, −5.14471324328776300412958484157, −4.95142969122764262924888752986, −4.74115199057845646833395970396, −3.98941359928894195860114952354, −3.75224571957846151204971727794, −3.04854431429324880386763263848, −2.71409612348653969035337592244, −2.12866043508923671343335719466, −2.08926203324091003929469616784, −0.873410222619377677133362177247, −0.56888979240443523485451004707,
0.56888979240443523485451004707, 0.873410222619377677133362177247, 2.08926203324091003929469616784, 2.12866043508923671343335719466, 2.71409612348653969035337592244, 3.04854431429324880386763263848, 3.75224571957846151204971727794, 3.98941359928894195860114952354, 4.74115199057845646833395970396, 4.95142969122764262924888752986, 5.14471324328776300412958484157, 5.48699053123705789383172323760, 6.25723759574105145418968551534, 6.42733369651222158320728151636, 7.04533586242340999746666343824, 7.13668568638155373234807499260, 7.52575193544606295970146718479, 7.75518421533519040946674359356, 8.416963170923571541082869928268, 8.665539042875274873056750348447