Properties

Label 4-3888e2-1.1-c0e2-0-9
Degree $4$
Conductor $15116544$
Sign $1$
Analytic cond. $3.76501$
Root an. cond. $1.39296$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13-s + 25-s + 3·31-s + 4·37-s + 3·43-s − 49-s + 61-s − 3·67-s + 2·73-s − 3·79-s − 97-s + 3·103-s + 2·109-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 13-s + 25-s + 3·31-s + 4·37-s + 3·43-s − 49-s + 61-s − 3·67-s + 2·73-s − 3·79-s − 97-s + 3·103-s + 2·109-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15116544\)    =    \(2^{8} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(3.76501\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15116544,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.668740490\)
\(L(\frac12)\) \(\approx\) \(1.668740490\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
37$C_1$ \( ( 1 - T )^{4} \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.885961145924870923476052039836, −8.386518690992425855669513092197, −7.992187187892519765486968507591, −7.86775293961580750167101300042, −7.32318509727496407983457496442, −7.14648041773955726321610064694, −6.59939036896005156344906845643, −6.16552541960628936440936917220, −5.90079189278106439658667161761, −5.71855337963896163041529332904, −4.77692405685990224974818861493, −4.72230224665409569264772137328, −4.34040617308450464683441648509, −4.12961318839900890955541060973, −3.07681920234615565342713484059, −3.03972133929248253682661866983, −2.38953697110489801921221712427, −2.30154171285332870199270133133, −1.04902367857313181663747407626, −0.949767843706296318295660339738, 0.949767843706296318295660339738, 1.04902367857313181663747407626, 2.30154171285332870199270133133, 2.38953697110489801921221712427, 3.03972133929248253682661866983, 3.07681920234615565342713484059, 4.12961318839900890955541060973, 4.34040617308450464683441648509, 4.72230224665409569264772137328, 4.77692405685990224974818861493, 5.71855337963896163041529332904, 5.90079189278106439658667161761, 6.16552541960628936440936917220, 6.59939036896005156344906845643, 7.14648041773955726321610064694, 7.32318509727496407983457496442, 7.86775293961580750167101300042, 7.992187187892519765486968507591, 8.386518690992425855669513092197, 8.885961145924870923476052039836

Graph of the $Z$-function along the critical line