Properties

Label 4-3871e2-1.1-c0e2-0-4
Degree $4$
Conductor $14984641$
Sign $1$
Analytic cond. $3.73216$
Root an. cond. $1.38992$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5-s + 2·9-s − 10-s − 11-s + 13-s − 2·18-s + 19-s + 22-s − 23-s − 26-s + 31-s + 32-s − 38-s + 2·45-s + 46-s − 55-s − 62-s − 64-s + 65-s − 67-s + 73-s + 2·79-s + 3·81-s − 4·83-s + 89-s − 2·90-s + ⋯
L(s)  = 1  − 2-s + 5-s + 2·9-s − 10-s − 11-s + 13-s − 2·18-s + 19-s + 22-s − 23-s − 26-s + 31-s + 32-s − 38-s + 2·45-s + 46-s − 55-s − 62-s − 64-s + 65-s − 67-s + 73-s + 2·79-s + 3·81-s − 4·83-s + 89-s − 2·90-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14984641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14984641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14984641\)    =    \(7^{4} \cdot 79^{2}\)
Sign: $1$
Analytic conductor: \(3.73216\)
Root analytic conductor: \(1.38992\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14984641,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.093707504\)
\(L(\frac12)\) \(\approx\) \(1.093707504\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
79$C_1$ \( ( 1 - T )^{2} \)
good2$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
5$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
11$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
13$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
23$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
83$C_1$ \( ( 1 + T )^{4} \)
89$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
97$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.934058520122654096880560447025, −8.483752216984281511831028398115, −8.087689005730467510298560007433, −7.86296963177424278798038184268, −7.52444368932463856971907750757, −7.02303209470808462205207979005, −6.76349931858681190969506761185, −6.20101623033584227621280417147, −6.02293828762766177802572178255, −5.61619938303031494470719440714, −4.97724897268879851068015874740, −4.84582754058516930157914867655, −4.18193711501116236739734378419, −4.00197664824122313983798470526, −3.31034910086610453511947107938, −2.90615668789877121469611312661, −2.21379826729241298497499007127, −1.86071031013832090378576423191, −1.29119035466535395828572803795, −0.795087921720937410396009565130, 0.795087921720937410396009565130, 1.29119035466535395828572803795, 1.86071031013832090378576423191, 2.21379826729241298497499007127, 2.90615668789877121469611312661, 3.31034910086610453511947107938, 4.00197664824122313983798470526, 4.18193711501116236739734378419, 4.84582754058516930157914867655, 4.97724897268879851068015874740, 5.61619938303031494470719440714, 6.02293828762766177802572178255, 6.20101623033584227621280417147, 6.76349931858681190969506761185, 7.02303209470808462205207979005, 7.52444368932463856971907750757, 7.86296963177424278798038184268, 8.087689005730467510298560007433, 8.483752216984281511831028398115, 8.934058520122654096880560447025

Graph of the $Z$-function along the critical line