Properties

Label 4-384e2-1.1-c1e2-0-37
Degree $4$
Conductor $147456$
Sign $1$
Analytic cond. $9.40192$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s + 8·11-s + 12·17-s − 10·25-s + 4·27-s + 16·33-s − 4·41-s − 16·43-s − 10·49-s + 24·51-s + 8·59-s − 8·67-s − 20·73-s − 20·75-s + 5·81-s − 24·83-s + 4·89-s − 12·97-s + 24·99-s + 24·107-s − 28·113-s + 26·121-s − 8·123-s + 127-s − 32·129-s + 131-s + ⋯
L(s)  = 1  + 1.15·3-s + 9-s + 2.41·11-s + 2.91·17-s − 2·25-s + 0.769·27-s + 2.78·33-s − 0.624·41-s − 2.43·43-s − 1.42·49-s + 3.36·51-s + 1.04·59-s − 0.977·67-s − 2.34·73-s − 2.30·75-s + 5/9·81-s − 2.63·83-s + 0.423·89-s − 1.21·97-s + 2.41·99-s + 2.32·107-s − 2.63·113-s + 2.36·121-s − 0.721·123-s + 0.0887·127-s − 2.81·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(147456\)    =    \(2^{14} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(9.40192\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 147456,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.035318132\)
\(L(\frac12)\) \(\approx\) \(3.035318132\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.464663439718228165986962411065, −8.658903060264415544055202217864, −8.503024042291174545390595385787, −7.70036027517747780731408099423, −7.67554775307177371631314255080, −6.80910210319960057293306406499, −6.52243750033071865852983380426, −5.75568326693151721019291253980, −5.36858848597467135489376840463, −4.36074490911347519116057298154, −3.94434944725762226728078180666, −3.36330701716196318281397292070, −3.06807634409715093203408940942, −1.59108885184574423909298130831, −1.50413098873776121963751941726, 1.50413098873776121963751941726, 1.59108885184574423909298130831, 3.06807634409715093203408940942, 3.36330701716196318281397292070, 3.94434944725762226728078180666, 4.36074490911347519116057298154, 5.36858848597467135489376840463, 5.75568326693151721019291253980, 6.52243750033071865852983380426, 6.80910210319960057293306406499, 7.67554775307177371631314255080, 7.70036027517747780731408099423, 8.503024042291174545390595385787, 8.658903060264415544055202217864, 9.464663439718228165986962411065

Graph of the $Z$-function along the critical line