Properties

Label 4-384e2-1.1-c1e2-0-35
Degree $4$
Conductor $147456$
Sign $1$
Analytic cond. $9.40192$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 9-s − 4·13-s − 4·17-s + 38·25-s + 4·37-s + 12·41-s + 8·45-s − 10·49-s − 28·61-s − 32·65-s − 20·73-s + 81-s − 32·85-s − 28·89-s + 20·97-s + 12·109-s + 4·113-s − 4·117-s − 6·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 3.57·5-s + 1/3·9-s − 1.10·13-s − 0.970·17-s + 38/5·25-s + 0.657·37-s + 1.87·41-s + 1.19·45-s − 1.42·49-s − 3.58·61-s − 3.96·65-s − 2.34·73-s + 1/9·81-s − 3.47·85-s − 2.96·89-s + 2.03·97-s + 1.14·109-s + 0.376·113-s − 0.369·117-s − 0.545·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(147456\)    =    \(2^{14} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(9.40192\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 147456,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.082273503\)
\(L(\frac12)\) \(\approx\) \(3.082273503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.433707596930861266358550422356, −8.985911500488081519481984584802, −8.743300071949026671666068984095, −7.69025257463999263217129645276, −7.27371486188202795087403560747, −6.52923673370585434887828168703, −6.30170361535159036673173480205, −5.81778647559970487461786585347, −5.46781891072947205774781799219, −4.60632905768716122167488407077, −4.59332442534898507060628341827, −2.92708427914109016867182117304, −2.63009703571906191631419054606, −1.91249343134731656186986110897, −1.43950309180346771366044691508, 1.43950309180346771366044691508, 1.91249343134731656186986110897, 2.63009703571906191631419054606, 2.92708427914109016867182117304, 4.59332442534898507060628341827, 4.60632905768716122167488407077, 5.46781891072947205774781799219, 5.81778647559970487461786585347, 6.30170361535159036673173480205, 6.52923673370585434887828168703, 7.27371486188202795087403560747, 7.69025257463999263217129645276, 8.743300071949026671666068984095, 8.985911500488081519481984584802, 9.433707596930861266358550422356

Graph of the $Z$-function along the critical line