Properties

Label 4-3840e2-1.1-c1e2-0-73
Degree $4$
Conductor $14745600$
Sign $1$
Analytic cond. $940.192$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s − 4·7-s + 3·9-s + 4·11-s − 4·13-s − 4·15-s − 8·21-s + 3·25-s + 4·27-s − 4·29-s − 8·31-s + 8·33-s + 8·35-s + 4·37-s − 8·39-s + 4·41-s − 8·43-s − 6·45-s − 8·47-s − 2·49-s − 12·53-s − 8·55-s + 4·59-s + 8·61-s − 12·63-s + 8·65-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s − 1.51·7-s + 9-s + 1.20·11-s − 1.10·13-s − 1.03·15-s − 1.74·21-s + 3/5·25-s + 0.769·27-s − 0.742·29-s − 1.43·31-s + 1.39·33-s + 1.35·35-s + 0.657·37-s − 1.28·39-s + 0.624·41-s − 1.21·43-s − 0.894·45-s − 1.16·47-s − 2/7·49-s − 1.64·53-s − 1.07·55-s + 0.520·59-s + 1.02·61-s − 1.51·63-s + 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14745600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14745600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14745600\)    =    \(2^{16} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(940.192\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 14745600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 8 T + 78 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 12 T + 110 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 4 T + 114 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 8 T + 106 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 8 T + 118 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 16 T + 174 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$D_{4}$ \( 1 + 20 T + 246 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 166 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.162244655544744862092529867049, −8.105500556012422632035757697208, −7.48206244061132668655557186412, −7.26267370186674390213852162645, −6.87746432065015431590065997132, −6.72299191914191127814883950879, −6.04134107516515135099198813769, −5.97784527345172530967753789503, −5.06421808955392790753205419238, −4.92632358264519517447241518087, −4.16593155706803711257900199501, −4.07509436663480773299586041954, −3.43448622087503449119383155452, −3.41947163587125376660483214850, −2.67529815770567707012049907024, −2.62281502463820647787683475795, −1.50970162287548745186148872109, −1.48670746216841464543140866380, 0, 0, 1.48670746216841464543140866380, 1.50970162287548745186148872109, 2.62281502463820647787683475795, 2.67529815770567707012049907024, 3.41947163587125376660483214850, 3.43448622087503449119383155452, 4.07509436663480773299586041954, 4.16593155706803711257900199501, 4.92632358264519517447241518087, 5.06421808955392790753205419238, 5.97784527345172530967753789503, 6.04134107516515135099198813769, 6.72299191914191127814883950879, 6.87746432065015431590065997132, 7.26267370186674390213852162645, 7.48206244061132668655557186412, 8.105500556012422632035757697208, 8.162244655544744862092529867049

Graph of the $Z$-function along the critical line