Properties

Label 4-3744e2-1.1-c1e2-0-10
Degree $4$
Conductor $14017536$
Sign $1$
Analytic cond. $893.770$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·7-s + 14·17-s + 8·23-s + 25-s + 16·31-s − 4·41-s − 14·47-s + 13·49-s − 6·71-s + 28·73-s + 20·79-s + 16·97-s + 12·103-s + 12·113-s − 84·119-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 48·161-s + 163-s + 167-s − 169-s + ⋯
L(s)  = 1  − 2.26·7-s + 3.39·17-s + 1.66·23-s + 1/5·25-s + 2.87·31-s − 0.624·41-s − 2.04·47-s + 13/7·49-s − 0.712·71-s + 3.27·73-s + 2.25·79-s + 1.62·97-s + 1.18·103-s + 1.12·113-s − 7.70·119-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 3.78·161-s + 0.0783·163-s + 0.0773·167-s − 0.0769·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14017536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14017536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14017536\)    =    \(2^{10} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(893.770\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14017536,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.762532128\)
\(L(\frac12)\) \(\approx\) \(2.762532128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_2$ \( 1 + T^{2} \)
good5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.634062321997018886648688134846, −8.249013359938070707737154342917, −8.024390805779863929082350778109, −7.58448174844116243181029221418, −7.18313079836657899187790598726, −6.78827086121344587444916827575, −6.36091404248984226508671355346, −6.24822188770034146979853787686, −5.89642221190825359384461806898, −5.24572452337337432413576212737, −4.85360871593317142099655212774, −4.83755644608983131410532151537, −3.66409819739302987864936745574, −3.63313328700375840805774317030, −3.11027091550498953658062136111, −3.06833981906607753311022033292, −2.50667611440250328149732812498, −1.61379954473299415405957426706, −0.814596216461762226005109417355, −0.72156226730330465486695067466, 0.72156226730330465486695067466, 0.814596216461762226005109417355, 1.61379954473299415405957426706, 2.50667611440250328149732812498, 3.06833981906607753311022033292, 3.11027091550498953658062136111, 3.63313328700375840805774317030, 3.66409819739302987864936745574, 4.83755644608983131410532151537, 4.85360871593317142099655212774, 5.24572452337337432413576212737, 5.89642221190825359384461806898, 6.24822188770034146979853787686, 6.36091404248984226508671355346, 6.78827086121344587444916827575, 7.18313079836657899187790598726, 7.58448174844116243181029221418, 8.024390805779863929082350778109, 8.249013359938070707737154342917, 8.634062321997018886648688134846

Graph of the $Z$-function along the critical line