Properties

Label 4-3720e2-1.1-c1e2-0-5
Degree $4$
Conductor $13838400$
Sign $1$
Analytic cond. $882.348$
Root an. cond. $5.45016$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 2·7-s + 3·9-s − 2·13-s + 4·15-s + 4·19-s − 4·21-s − 8·23-s + 3·25-s − 4·27-s − 10·29-s − 2·31-s − 4·35-s + 14·37-s + 4·39-s − 12·41-s + 4·43-s − 6·45-s − 6·49-s + 8·53-s − 8·57-s + 18·59-s − 16·61-s + 6·63-s + 4·65-s − 6·67-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 0.755·7-s + 9-s − 0.554·13-s + 1.03·15-s + 0.917·19-s − 0.872·21-s − 1.66·23-s + 3/5·25-s − 0.769·27-s − 1.85·29-s − 0.359·31-s − 0.676·35-s + 2.30·37-s + 0.640·39-s − 1.87·41-s + 0.609·43-s − 0.894·45-s − 6/7·49-s + 1.09·53-s − 1.05·57-s + 2.34·59-s − 2.04·61-s + 0.755·63-s + 0.496·65-s − 0.733·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13838400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13838400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(13838400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(882.348\)
Root analytic conductor: \(5.45016\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 13838400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
31$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 + 10 T + 78 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 14 T + 118 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 4 T + 70 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 8 T + 102 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 18 T + 194 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
61$C_4$ \( 1 + 16 T + 166 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 6 T + 98 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 14 T + 186 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 8 T + 102 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 10 T + 198 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 8 T + 190 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.141938541201937503561861592057, −7.82351406466869634282047463533, −7.50933929473104756363391763666, −7.49496197242439804236899890035, −6.75756435225147561006332244579, −6.60726340629266522415052807740, −5.95440540124841276377983272944, −5.67746497518047663249582866714, −5.37940507506516526812860901885, −4.97165533591985074678432472638, −4.46254556829077584151830769313, −4.27157908298487974828005476628, −3.67902663584449257347626952077, −3.53045995532553252199680384501, −2.59024059186908339093324335047, −2.30539838373646264061693609889, −1.42507665826195754990578343714, −1.23441897082536577684323572463, 0, 0, 1.23441897082536577684323572463, 1.42507665826195754990578343714, 2.30539838373646264061693609889, 2.59024059186908339093324335047, 3.53045995532553252199680384501, 3.67902663584449257347626952077, 4.27157908298487974828005476628, 4.46254556829077584151830769313, 4.97165533591985074678432472638, 5.37940507506516526812860901885, 5.67746497518047663249582866714, 5.95440540124841276377983272944, 6.60726340629266522415052807740, 6.75756435225147561006332244579, 7.49496197242439804236899890035, 7.50933929473104756363391763666, 7.82351406466869634282047463533, 8.141938541201937503561861592057

Graph of the $Z$-function along the critical line