Properties

Label 4-370e2-1.1-c3e2-0-0
Degree $4$
Conductor $136900$
Sign $1$
Analytic cond. $476.579$
Root an. cond. $4.67233$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s − 5·5-s − 2·6-s + 20·7-s − 8·8-s + 27·9-s − 10·10-s − 76·11-s − 17·13-s + 40·14-s + 5·15-s − 16·16-s + 14·17-s + 54·18-s − 98·19-s − 20·21-s − 152·22-s − 276·23-s + 8·24-s − 34·26-s − 80·27-s + 28·29-s + 10·30-s − 130·31-s + 76·33-s + 28·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.192·3-s − 0.447·5-s − 0.136·6-s + 1.07·7-s − 0.353·8-s + 9-s − 0.316·10-s − 2.08·11-s − 0.362·13-s + 0.763·14-s + 0.0860·15-s − 1/4·16-s + 0.199·17-s + 0.707·18-s − 1.18·19-s − 0.207·21-s − 1.47·22-s − 2.50·23-s + 0.0680·24-s − 0.256·26-s − 0.570·27-s + 0.179·29-s + 0.0608·30-s − 0.753·31-s + 0.400·33-s + 0.141·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 136900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136900 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(136900\)    =    \(2^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(476.579\)
Root analytic conductor: \(4.67233\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 136900,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5605741575\)
\(L(\frac12)\) \(\approx\) \(0.5605741575\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
5$C_2$ \( 1 + p T + p^{2} T^{2} \)
37$C_2$ \( 1 + p T + p^{3} T^{2} \)
good3$C_2^2$ \( 1 + T - 26 T^{2} + p^{3} T^{3} + p^{6} T^{4} \)
7$C_2$ \( ( 1 - 37 T + p^{3} T^{2} )( 1 + 17 T + p^{3} T^{2} ) \)
11$C_2$ \( ( 1 + 38 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 17 T - 1908 T^{2} + 17 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 14 T - 4717 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 98 T + 2745 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2$ \( ( 1 + 6 p T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 14 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 65 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 3 T - 68912 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 229 T + p^{3} T^{2} )^{2} \)
47$C_2$ \( ( 1 + 316 T + p^{3} T^{2} )^{2} \)
53$C_2^2$ \( 1 + 507 T + 108172 T^{2} + 507 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 38 T - 203935 T^{2} - 38 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 350 T - 104481 T^{2} - 350 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 468 T - 81739 T^{2} + 468 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 1160 T + 987689 T^{2} + 1160 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 694 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 44 T - 491103 T^{2} + 44 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 284 T - 491131 T^{2} - 284 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 102 T - 694565 T^{2} - 102 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 366 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.38266654010114686936873383665, −10.55665365368291662814276249760, −10.52035632380877993497468736047, −9.931352646322629773969868825400, −9.610609148111263222085245963851, −8.676706721771702113712895398323, −8.203071744416690287107103751701, −7.78382040382761941713804999040, −7.76797114974458515756817503197, −6.87192184258336687098756155915, −6.38672342143803588217823349574, −5.61762803142278032840397579124, −5.32058664593253338727138838617, −4.59784603861374518129979777612, −4.48001896819980996413074502332, −3.74623590152602293344892020407, −3.05097008832524805191747221852, −2.01427184577112611128478273872, −1.82849988411373416768163873627, −0.21826142754073188418282500585, 0.21826142754073188418282500585, 1.82849988411373416768163873627, 2.01427184577112611128478273872, 3.05097008832524805191747221852, 3.74623590152602293344892020407, 4.48001896819980996413074502332, 4.59784603861374518129979777612, 5.32058664593253338727138838617, 5.61762803142278032840397579124, 6.38672342143803588217823349574, 6.87192184258336687098756155915, 7.76797114974458515756817503197, 7.78382040382761941713804999040, 8.203071744416690287107103751701, 8.676706721771702113712895398323, 9.610609148111263222085245963851, 9.931352646322629773969868825400, 10.52035632380877993497468736047, 10.55665365368291662814276249760, 11.38266654010114686936873383665

Graph of the $Z$-function along the critical line