Properties

Label 4-36992-1.1-c1e2-0-13
Degree $4$
Conductor $36992$
Sign $-1$
Analytic cond. $2.35864$
Root an. cond. $1.23926$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 2·9-s + 4·13-s + 2·17-s + 2·25-s − 20·29-s + 12·37-s − 12·41-s + 8·45-s − 10·49-s − 20·53-s + 28·61-s − 16·65-s − 28·73-s − 5·81-s − 8·85-s − 20·89-s + 4·97-s + 20·101-s + 12·109-s + 20·113-s − 8·117-s + 14·121-s + 28·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.78·5-s − 2/3·9-s + 1.10·13-s + 0.485·17-s + 2/5·25-s − 3.71·29-s + 1.97·37-s − 1.87·41-s + 1.19·45-s − 1.42·49-s − 2.74·53-s + 3.58·61-s − 1.98·65-s − 3.27·73-s − 5/9·81-s − 0.867·85-s − 2.11·89-s + 0.406·97-s + 1.99·101-s + 1.14·109-s + 1.88·113-s − 0.739·117-s + 1.27·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36992 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36992 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36992\)    =    \(2^{7} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2.35864\)
Root analytic conductor: \(1.23926\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 36992,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.867199747238314258507049095404, −9.721938483460284802573704470251, −8.878376583314565709515988150650, −8.306702051055435143424050976414, −8.119321761242708900614562817168, −7.35622902308931120005953550776, −7.22959647173292270161762928560, −5.94766297465593937866721260525, −5.94691251018865401690641595052, −4.93933220983461313213877514067, −4.14991391129811641343695020033, −3.59025133227290315875645783201, −3.24743736182506202340620349352, −1.78722102085145557690346531679, 0, 1.78722102085145557690346531679, 3.24743736182506202340620349352, 3.59025133227290315875645783201, 4.14991391129811641343695020033, 4.93933220983461313213877514067, 5.94691251018865401690641595052, 5.94766297465593937866721260525, 7.22959647173292270161762928560, 7.35622902308931120005953550776, 8.119321761242708900614562817168, 8.306702051055435143424050976414, 8.878376583314565709515988150650, 9.721938483460284802573704470251, 9.867199747238314258507049095404

Graph of the $Z$-function along the critical line