| L(s) = 1 | − 2·2-s + 2·4-s − 6·5-s − 6·9-s + 12·10-s − 2·13-s − 4·16-s + 8·17-s + 12·18-s − 12·20-s + 17·25-s + 4·26-s − 10·29-s + 8·32-s − 16·34-s − 12·36-s − 8·37-s − 12·41-s + 36·45-s + 49-s − 34·50-s − 4·52-s − 18·53-s + 20·58-s − 20·61-s − 8·64-s + 12·65-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 4-s − 2.68·5-s − 2·9-s + 3.79·10-s − 0.554·13-s − 16-s + 1.94·17-s + 2.82·18-s − 2.68·20-s + 17/5·25-s + 0.784·26-s − 1.85·29-s + 1.41·32-s − 2.74·34-s − 2·36-s − 1.31·37-s − 1.87·41-s + 5.36·45-s + 1/7·49-s − 4.80·50-s − 0.554·52-s − 2.47·53-s + 2.62·58-s − 2.56·61-s − 64-s + 1.48·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.920719672465111957084037828236, −8.306653899443735547493881784402, −7.88305646625584781075065151406, −7.65856427227425769928738953272, −7.43563929744309328324545511818, −6.69324481208496363874135514467, −5.91107970337180073579003850586, −5.27883313770925671699270459709, −4.71772169836810783436044308640, −3.91316951599567757387300319071, −3.20361346457630305584783093767, −3.11744276397134147631028514628, −1.62321334030766970947302300597, 0, 0,
1.62321334030766970947302300597, 3.11744276397134147631028514628, 3.20361346457630305584783093767, 3.91316951599567757387300319071, 4.71772169836810783436044308640, 5.27883313770925671699270459709, 5.91107970337180073579003850586, 6.69324481208496363874135514467, 7.43563929744309328324545511818, 7.65856427227425769928738953272, 7.88305646625584781075065151406, 8.306653899443735547493881784402, 8.920719672465111957084037828236