| L(s) = 1 | + 2·3-s + 4-s + 4·5-s + 3·9-s + 2·12-s + 8·15-s − 3·16-s + 4·20-s − 8·23-s + 2·25-s + 4·27-s + 3·36-s + 4·37-s + 12·45-s + 16·47-s − 6·48-s + 6·49-s + 12·53-s + 8·60-s − 7·64-s − 24·67-s − 16·69-s − 16·71-s + 4·75-s − 12·80-s + 5·81-s − 28·89-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 1/2·4-s + 1.78·5-s + 9-s + 0.577·12-s + 2.06·15-s − 3/4·16-s + 0.894·20-s − 1.66·23-s + 2/5·25-s + 0.769·27-s + 1/2·36-s + 0.657·37-s + 1.78·45-s + 2.33·47-s − 0.866·48-s + 6/7·49-s + 1.64·53-s + 1.03·60-s − 7/8·64-s − 2.93·67-s − 1.92·69-s − 1.89·71-s + 0.461·75-s − 1.34·80-s + 5/9·81-s − 2.96·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 131769 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.605239194\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.605239194\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.96813214338545798912435604191, −11.09872188734298677461845321186, −10.38104632610696553786721885962, −10.29874149462326644647336749676, −9.800274452758984125650845855443, −9.403921354606738867216501418016, −8.768845110335529202437101245554, −8.753138004800805002071256031689, −7.899713085368000972535923301565, −7.23339165975832432669132254947, −7.21034934891176342175331080954, −6.21714992398416050933747042136, −5.78864244709404609915381922195, −5.73387068866665816679127942391, −4.44686979466227102752556716323, −4.23324492548299928706192072988, −3.27526656858308043035087270177, −2.34514472825920689329196705733, −2.30867629089593721766915328887, −1.50398825572931132120664116879,
1.50398825572931132120664116879, 2.30867629089593721766915328887, 2.34514472825920689329196705733, 3.27526656858308043035087270177, 4.23324492548299928706192072988, 4.44686979466227102752556716323, 5.73387068866665816679127942391, 5.78864244709404609915381922195, 6.21714992398416050933747042136, 7.21034934891176342175331080954, 7.23339165975832432669132254947, 7.899713085368000972535923301565, 8.753138004800805002071256031689, 8.768845110335529202437101245554, 9.403921354606738867216501418016, 9.800274452758984125650845855443, 10.29874149462326644647336749676, 10.38104632610696553786721885962, 11.09872188734298677461845321186, 11.96813214338545798912435604191