L(s) = 1 | + 2·3-s + 2·9-s − 2·23-s − 25-s + 2·27-s + 2·37-s + 2·47-s + 2·53-s − 4·59-s − 2·67-s − 4·69-s − 2·75-s + 3·81-s + 2·97-s + 2·103-s + 4·111-s + 2·113-s − 121-s + 127-s + 131-s + 137-s + 139-s + 4·141-s + 149-s + 151-s + 157-s + 4·159-s + ⋯ |
L(s) = 1 | + 2·3-s + 2·9-s − 2·23-s − 25-s + 2·27-s + 2·37-s + 2·47-s + 2·53-s − 4·59-s − 2·67-s − 4·69-s − 2·75-s + 3·81-s + 2·97-s + 2·103-s + 4·111-s + 2·113-s − 121-s + 127-s + 131-s + 137-s + 139-s + 4·141-s + 149-s + 151-s + 157-s + 4·159-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12390400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12390400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.897207898\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.897207898\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.959413830882432028919420140206, −8.426804945928555706539348257693, −8.373121607941518872698173430142, −7.71306184159860454152181016566, −7.57432548371909978402923575997, −7.51366561642598946347535082897, −6.87904312531357524354101443112, −6.12002223052367527014788395765, −5.98997272316989416539037392683, −5.89491416418119443838896801987, −4.93672759219392977097245953046, −4.52294321957145122556567156863, −4.26871364490257042912855529142, −3.75576818628344640257844640158, −3.49148663243138970128139299962, −2.75972577348477865730905137322, −2.74235442698613735742205764445, −1.95986582775280986915833989711, −1.87878290293833525195146886545, −0.884116654868285036603463869265,
0.884116654868285036603463869265, 1.87878290293833525195146886545, 1.95986582775280986915833989711, 2.74235442698613735742205764445, 2.75972577348477865730905137322, 3.49148663243138970128139299962, 3.75576818628344640257844640158, 4.26871364490257042912855529142, 4.52294321957145122556567156863, 4.93672759219392977097245953046, 5.89491416418119443838896801987, 5.98997272316989416539037392683, 6.12002223052367527014788395765, 6.87904312531357524354101443112, 7.51366561642598946347535082897, 7.57432548371909978402923575997, 7.71306184159860454152181016566, 8.373121607941518872698173430142, 8.426804945928555706539348257693, 8.959413830882432028919420140206