Properties

Label 4-350e2-1.1-c5e2-0-12
Degree $4$
Conductor $122500$
Sign $1$
Analytic cond. $3151.06$
Root an. cond. $7.49228$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 8·3-s + 48·4-s + 64·6-s + 98·7-s − 256·8-s − 122·9-s − 6·11-s − 384·12-s − 692·13-s − 784·14-s + 1.28e3·16-s − 504·17-s + 976·18-s − 68·19-s − 784·21-s + 48·22-s − 1.65e3·23-s + 2.04e3·24-s + 5.53e3·26-s + 520·27-s + 4.70e3·28-s + 2.85e3·29-s + 3.84e3·31-s − 6.14e3·32-s + 48·33-s + 4.03e3·34-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.513·3-s + 3/2·4-s + 0.725·6-s + 0.755·7-s − 1.41·8-s − 0.502·9-s − 0.0149·11-s − 0.769·12-s − 1.13·13-s − 1.06·14-s + 5/4·16-s − 0.422·17-s + 0.710·18-s − 0.0432·19-s − 0.387·21-s + 0.0211·22-s − 0.650·23-s + 0.725·24-s + 1.60·26-s + 0.137·27-s + 1.13·28-s + 0.629·29-s + 0.718·31-s − 1.06·32-s + 0.00767·33-s + 0.598·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(122500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(3151.06\)
Root analytic conductor: \(7.49228\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 122500,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{2} T )^{2} \)
5 \( 1 \)
7$C_1$ \( ( 1 - p^{2} T )^{2} \)
good3$C_2^2$ \( 1 + 8 T + 62 p T^{2} + 8 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 + 6 T + 319267 T^{2} + 6 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 + 692 T + 791202 T^{2} + 692 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 504 T + 2891842 T^{2} + 504 p^{5} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 + 68 T + 4031898 T^{2} + 68 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 + 1650 T + 11775811 T^{2} + 1650 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 - 2850 T + 18981307 T^{2} - 2850 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 - 4 p^{2} T + 60813030 T^{2} - 4 p^{7} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 + 11342 T + 128518059 T^{2} + 11342 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 - 15288 T + 255102214 T^{2} - 15288 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 + 854 T + 293718579 T^{2} + 854 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 15060 T + 382701250 T^{2} + 15060 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 - 18252 T + 899607598 T^{2} - 18252 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 - 38196 T + 1793760286 T^{2} - 38196 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 + 15656 T + 1482426030 T^{2} + 15656 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 + 64898 T + 3422484651 T^{2} + 64898 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 + 40086 T + 2804890507 T^{2} + 40086 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 - 73360 T + 2653250742 T^{2} - 73360 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 - 35470 T + 6292312179 T^{2} - 35470 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 + 1956 T + 4393860814 T^{2} + 1956 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 + 19356 T + 7173245338 T^{2} + 19356 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 227468 T + 30109963914 T^{2} + 227468 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33711526897830866645047702770, −10.02946957969860746871554294162, −9.497879106460474700906934208241, −9.067314704831133062362139735974, −8.455710215287439833498373523310, −8.243669381931985321088628439167, −7.64372096954620399097940626343, −7.28620597237907357541720528576, −6.59867476533970152355486963791, −6.34820271868283375185870671960, −5.40681831547882218165023702127, −5.31731174942797126796885713625, −4.44678942731446812111127286805, −3.83635028420286544276062956129, −2.66040923522346258716907509602, −2.55633352028904637032941960992, −1.62726277951026715129555352840, −1.06705904140191035540692314601, 0, 0, 1.06705904140191035540692314601, 1.62726277951026715129555352840, 2.55633352028904637032941960992, 2.66040923522346258716907509602, 3.83635028420286544276062956129, 4.44678942731446812111127286805, 5.31731174942797126796885713625, 5.40681831547882218165023702127, 6.34820271868283375185870671960, 6.59867476533970152355486963791, 7.28620597237907357541720528576, 7.64372096954620399097940626343, 8.243669381931985321088628439167, 8.455710215287439833498373523310, 9.067314704831133062362139735974, 9.497879106460474700906934208241, 10.02946957969860746871554294162, 10.33711526897830866645047702770

Graph of the $Z$-function along the critical line