L(s) = 1 | − 4-s + 4·13-s + 16-s − 4·52-s − 64-s − 81-s + 4·89-s − 4·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + 211-s + ⋯ |
L(s) = 1 | − 4-s + 4·13-s + 16-s − 4·52-s − 64-s − 81-s + 4·89-s − 4·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + 211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1336336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1336336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.021881552\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.021881552\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14911886812605344966685252029, −9.828436684303266026564496717583, −9.042770923072000633582516740499, −9.042761878918763567807525692038, −8.528243929486229495731371508990, −8.443073143215756793929554480558, −7.73351118326242519059924752766, −7.61291123898062320768263169986, −6.60075638751644783424001245416, −6.34509077012111079513952371251, −6.12474227824019852974080244415, −5.48307811789978765772994242419, −5.21657532887193524305873784777, −4.46382693193862481546202965180, −3.96952724505042743645441889020, −3.63349675825252596942810395588, −3.39118794709560083732820756058, −2.50896669731885138429607978795, −1.34928060120166883895863755008, −1.20800603005854348550064001621,
1.20800603005854348550064001621, 1.34928060120166883895863755008, 2.50896669731885138429607978795, 3.39118794709560083732820756058, 3.63349675825252596942810395588, 3.96952724505042743645441889020, 4.46382693193862481546202965180, 5.21657532887193524305873784777, 5.48307811789978765772994242419, 6.12474227824019852974080244415, 6.34509077012111079513952371251, 6.60075638751644783424001245416, 7.61291123898062320768263169986, 7.73351118326242519059924752766, 8.443073143215756793929554480558, 8.528243929486229495731371508990, 9.042761878918763567807525692038, 9.042770923072000633582516740499, 9.828436684303266026564496717583, 10.14911886812605344966685252029