L(s) = 1 | − 3-s + 9-s + 8·11-s − 4·13-s − 16·23-s − 6·25-s − 27-s − 8·33-s + 12·37-s + 4·39-s − 14·49-s + 8·59-s − 4·61-s + 16·69-s + 16·71-s + 20·73-s + 6·75-s + 81-s − 8·83-s + 4·97-s + 8·99-s − 24·107-s − 4·109-s − 12·111-s − 4·117-s + 26·121-s + 127-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 2.41·11-s − 1.10·13-s − 3.33·23-s − 6/5·25-s − 0.192·27-s − 1.39·33-s + 1.97·37-s + 0.640·39-s − 2·49-s + 1.04·59-s − 0.512·61-s + 1.92·69-s + 1.89·71-s + 2.34·73-s + 0.692·75-s + 1/9·81-s − 0.878·83-s + 0.406·97-s + 0.804·99-s − 2.32·107-s − 0.383·109-s − 1.13·111-s − 0.369·117-s + 2.36·121-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6712504791\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6712504791\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_1$ | \( 1 + T \) |
good | 5 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31725686074733747032880351584, −12.08490635724128893343813281351, −11.58204746144152243175303945055, −11.14455695554061766980709369025, −9.964671915727173343349228861429, −9.747086677582411849557090474382, −9.298977106556460794427243537385, −8.098990694093691505068092710868, −7.77541900804615864403738320707, −6.50812189570177474416634496690, −6.42897107072744719896577758454, −5.48498394296229820428473072147, −4.25303028692796488061253338187, −3.89741909491206350829507060388, −1.97363471421369880359461961552,
1.97363471421369880359461961552, 3.89741909491206350829507060388, 4.25303028692796488061253338187, 5.48498394296229820428473072147, 6.42897107072744719896577758454, 6.50812189570177474416634496690, 7.77541900804615864403738320707, 8.098990694093691505068092710868, 9.298977106556460794427243537385, 9.747086677582411849557090474382, 9.964671915727173343349228861429, 11.14455695554061766980709369025, 11.58204746144152243175303945055, 12.08490635724128893343813281351, 12.31725686074733747032880351584