Properties

Label 4-33e4-1.1-c3e2-0-7
Degree $4$
Conductor $1185921$
Sign $1$
Analytic cond. $4128.45$
Root an. cond. $8.01580$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4-s − 20·5-s + 16·7-s + 4·8-s − 40·10-s − 80·13-s + 32·14-s − 19·16-s + 164·17-s + 36·19-s + 20·20-s − 172·23-s + 62·25-s − 160·26-s − 16·28-s + 108·29-s − 448·31-s − 202·32-s + 328·34-s − 320·35-s + 108·37-s + 72·38-s − 80·40-s + 212·41-s − 156·43-s − 344·46-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/8·4-s − 1.78·5-s + 0.863·7-s + 0.176·8-s − 1.26·10-s − 1.70·13-s + 0.610·14-s − 0.296·16-s + 2.33·17-s + 0.434·19-s + 0.223·20-s − 1.55·23-s + 0.495·25-s − 1.20·26-s − 0.107·28-s + 0.691·29-s − 2.59·31-s − 1.11·32-s + 1.65·34-s − 1.54·35-s + 0.479·37-s + 0.307·38-s − 0.316·40-s + 0.807·41-s − 0.553·43-s − 1.10·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1185921\)    =    \(3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(4128.45\)
Root analytic conductor: \(8.01580\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1185921,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$D_{4}$ \( 1 - p T + 5 T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 4 p T + 338 T^{2} + 4 p^{4} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 16 T + 450 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 80 T + 4542 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 164 T + 16118 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 36 T + 3242 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 172 T + 30758 T^{2} + 172 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 108 T + 14062 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 448 T + 101646 T^{2} + 448 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 108 T + 103022 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 212 T + 148886 T^{2} - 212 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 156 T + 63530 T^{2} + 156 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 20 T + 202454 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 132 T - 117518 T^{2} - 132 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 688 T + 404246 T^{2} + 688 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 96 T + 402398 T^{2} - 96 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 448 T + 455094 T^{2} - 448 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 132 T - 187322 T^{2} + 132 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 428 T + 808278 T^{2} + 428 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 424 T + 1031010 T^{2} + 424 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 720 T + 1262374 T^{2} - 720 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1056 T + 1317010 T^{2} + 1056 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 52 T - 413466 T^{2} - 52 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.235807056771754867827905893069, −8.884267105467259768515400317431, −8.120615808963803157032386348978, −7.83145083615192795254607473989, −7.75249251802297185790128888519, −7.32701023558098975608903231600, −7.09754242798079383008727692244, −6.18575639917012018947416016980, −5.57501779239004146125175540911, −5.41145086745783693652335163780, −4.68380113848753585652093814515, −4.61459698291883736006411891738, −3.97228357793906671396256581716, −3.57129850614033151772796978561, −3.29194441517643158334481275800, −2.37721057993586206146554203717, −1.82434172546845322999280160137, −1.08537954816903205190665312972, 0, 0, 1.08537954816903205190665312972, 1.82434172546845322999280160137, 2.37721057993586206146554203717, 3.29194441517643158334481275800, 3.57129850614033151772796978561, 3.97228357793906671396256581716, 4.61459698291883736006411891738, 4.68380113848753585652093814515, 5.41145086745783693652335163780, 5.57501779239004146125175540911, 6.18575639917012018947416016980, 7.09754242798079383008727692244, 7.32701023558098975608903231600, 7.75249251802297185790128888519, 7.83145083615192795254607473989, 8.120615808963803157032386348978, 8.884267105467259768515400317431, 9.235807056771754867827905893069

Graph of the $Z$-function along the critical line