Properties

Label 4-3360e2-1.1-c1e2-0-10
Degree $4$
Conductor $11289600$
Sign $1$
Analytic cond. $719.834$
Root an. cond. $5.17974$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·5-s + 3·9-s − 4·13-s − 8·15-s + 11·25-s − 4·27-s + 8·31-s + 12·37-s + 8·39-s − 20·43-s + 12·45-s − 49-s + 28·53-s − 16·65-s + 20·67-s + 24·71-s − 22·75-s + 28·79-s + 5·81-s − 24·83-s + 16·89-s − 16·93-s − 8·107-s − 24·111-s − 12·117-s + 6·121-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.78·5-s + 9-s − 1.10·13-s − 2.06·15-s + 11/5·25-s − 0.769·27-s + 1.43·31-s + 1.97·37-s + 1.28·39-s − 3.04·43-s + 1.78·45-s − 1/7·49-s + 3.84·53-s − 1.98·65-s + 2.44·67-s + 2.84·71-s − 2.54·75-s + 3.15·79-s + 5/9·81-s − 2.63·83-s + 1.69·89-s − 1.65·93-s − 0.773·107-s − 2.27·111-s − 1.10·117-s + 6/11·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11289600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11289600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11289600\)    =    \(2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(719.834\)
Root analytic conductor: \(5.17974\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{3360} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11289600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.020632629\)
\(L(\frac12)\) \(\approx\) \(3.020632629\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 158 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.678959843910684354535765281541, −8.634417168796602573232200212981, −7.85736895862863114998902338165, −7.85075297509681791674816401126, −7.03169653556451437745169327320, −6.72349154604933063631531498362, −6.54242646286788321098726106374, −6.32519961467632881753222059219, −5.65372024085154137612866265216, −5.38097702192995466349952942588, −5.12769437408087778877743736325, −4.89154385998927961098074804378, −4.24496581814966021763416399108, −3.89417464597401757342466764224, −3.13365916906157826763865428526, −2.63962210547780052340180394054, −2.05876307779322191926962129719, −1.99499261803867860037445193670, −0.901160026147059571944260747147, −0.74138158525048299141490105584, 0.74138158525048299141490105584, 0.901160026147059571944260747147, 1.99499261803867860037445193670, 2.05876307779322191926962129719, 2.63962210547780052340180394054, 3.13365916906157826763865428526, 3.89417464597401757342466764224, 4.24496581814966021763416399108, 4.89154385998927961098074804378, 5.12769437408087778877743736325, 5.38097702192995466349952942588, 5.65372024085154137612866265216, 6.32519961467632881753222059219, 6.54242646286788321098726106374, 6.72349154604933063631531498362, 7.03169653556451437745169327320, 7.85075297509681791674816401126, 7.85736895862863114998902338165, 8.634417168796602573232200212981, 8.678959843910684354535765281541

Graph of the $Z$-function along the critical line