L(s) = 1 | + 3-s + 3·5-s + 5·7-s − 2·11-s + 7·13-s + 3·15-s − 6·17-s − 2·19-s + 5·21-s − 6·23-s + 2·25-s + 2·27-s + 9·29-s + 17·31-s − 2·33-s + 15·35-s + 16·37-s + 7·39-s + 3·41-s − 43-s + 10·49-s − 6·51-s + 6·53-s − 6·55-s − 2·57-s + 4·61-s + 21·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.34·5-s + 1.88·7-s − 0.603·11-s + 1.94·13-s + 0.774·15-s − 1.45·17-s − 0.458·19-s + 1.09·21-s − 1.25·23-s + 2/5·25-s + 0.384·27-s + 1.67·29-s + 3.05·31-s − 0.348·33-s + 2.53·35-s + 2.63·37-s + 1.12·39-s + 0.468·41-s − 0.152·43-s + 10/7·49-s − 0.840·51-s + 0.824·53-s − 0.809·55-s − 0.264·57-s + 0.512·61-s + 2.60·65-s + ⋯ |
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(11182336s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11182336
= 28⋅112⋅192
|
Sign: |
1
|
Analytic conductor: |
712.995 |
Root analytic conductor: |
5.16739 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11182336, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.668808474 |
L(21) |
≈ |
7.668808474 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1+T)2 |
| 19 | C1 | (1+T)2 |
good | 3 | D4 | 1−T+T2−pT3+p2T4 |
| 5 | D4 | 1−3T+7T2−3pT3+p2T4 |
| 7 | D4 | 1−5T+15T2−5pT3+p2T4 |
| 13 | D4 | 1−7T+33T2−7pT3+p2T4 |
| 17 | D4 | 1+6T+22T2+6pT3+p2T4 |
| 23 | D4 | 1+6T+34T2+6pT3+p2T4 |
| 29 | D4 | 1−9T+73T2−9pT3+p2T4 |
| 31 | D4 | 1−17T+129T2−17pT3+p2T4 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | D4 | 1−3T+79T2−3pT3+p2T4 |
| 43 | D4 | 1+T+39T2+pT3+p2T4 |
| 47 | C22 | 1+10T2+p2T4 |
| 53 | D4 | 1−6T+94T2−6pT3+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | D4 | 1−5T+135T2−5pT3+p2T4 |
| 71 | D4 | 1−9T+115T2−9pT3+p2T4 |
| 73 | D4 | 1−10T+150T2−10pT3+p2T4 |
| 79 | D4 | 1−2T+138T2−2pT3+p2T4 |
| 83 | D4 | 1−3T+163T2−3pT3+p2T4 |
| 89 | D4 | 1+18T+238T2+18pT3+p2T4 |
| 97 | C2 | (1−8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.486807185866756808031225617644, −8.400399505010108897872101436719, −8.142490351811044314131412856339, −8.097714889068247609037348950572, −7.51981563924045934483629141209, −6.61833617184988910411403824790, −6.46654781869563031625894102157, −6.40355553839369254166287429616, −5.74906222594953493391441377177, −5.49619087486239944381125007344, −4.92906925361413416353411607223, −4.48925273948586296338615918432, −4.23917730801176553698487534301, −3.99105368593266749617840023358, −2.99004905331838308003568619485, −2.63289081188703848382747190153, −2.26052903083815587738649227849, −1.94377543123514766152516822837, −1.10605713476119079480259838507, −0.983137180192912163317366735551,
0.983137180192912163317366735551, 1.10605713476119079480259838507, 1.94377543123514766152516822837, 2.26052903083815587738649227849, 2.63289081188703848382747190153, 2.99004905331838308003568619485, 3.99105368593266749617840023358, 4.23917730801176553698487534301, 4.48925273948586296338615918432, 4.92906925361413416353411607223, 5.49619087486239944381125007344, 5.74906222594953493391441377177, 6.40355553839369254166287429616, 6.46654781869563031625894102157, 6.61833617184988910411403824790, 7.51981563924045934483629141209, 8.097714889068247609037348950572, 8.142490351811044314131412856339, 8.400399505010108897872101436719, 8.486807185866756808031225617644