Properties

Label 4-3344e2-1.1-c1e2-0-2
Degree $4$
Conductor $11182336$
Sign $1$
Analytic cond. $712.995$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 5·7-s − 2·11-s + 7·13-s + 3·15-s − 6·17-s − 2·19-s + 5·21-s − 6·23-s + 2·25-s + 2·27-s + 9·29-s + 17·31-s − 2·33-s + 15·35-s + 16·37-s + 7·39-s + 3·41-s − 43-s + 10·49-s − 6·51-s + 6·53-s − 6·55-s − 2·57-s + 4·61-s + 21·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 1.88·7-s − 0.603·11-s + 1.94·13-s + 0.774·15-s − 1.45·17-s − 0.458·19-s + 1.09·21-s − 1.25·23-s + 2/5·25-s + 0.384·27-s + 1.67·29-s + 3.05·31-s − 0.348·33-s + 2.53·35-s + 2.63·37-s + 1.12·39-s + 0.468·41-s − 0.152·43-s + 10/7·49-s − 0.840·51-s + 0.824·53-s − 0.809·55-s − 0.264·57-s + 0.512·61-s + 2.60·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11182336\)    =    \(2^{8} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(712.995\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11182336,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.668808474\)
\(L(\frac12)\) \(\approx\) \(7.668808474\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 - T + T^{2} - p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - 3 T + 7 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 5 T + 15 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 7 T + 33 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 6 T + 22 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 9 T + 73 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 17 T + 129 T^{2} - 17 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 - 3 T + 79 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + T + 39 T^{2} + p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 6 T + 94 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 - 5 T + 135 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 9 T + 115 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 10 T + 150 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 2 T + 138 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 3 T + 163 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 18 T + 238 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.486807185866756808031225617644, −8.400399505010108897872101436719, −8.142490351811044314131412856339, −8.097714889068247609037348950572, −7.51981563924045934483629141209, −6.61833617184988910411403824790, −6.46654781869563031625894102157, −6.40355553839369254166287429616, −5.74906222594953493391441377177, −5.49619087486239944381125007344, −4.92906925361413416353411607223, −4.48925273948586296338615918432, −4.23917730801176553698487534301, −3.99105368593266749617840023358, −2.99004905331838308003568619485, −2.63289081188703848382747190153, −2.26052903083815587738649227849, −1.94377543123514766152516822837, −1.10605713476119079480259838507, −0.983137180192912163317366735551, 0.983137180192912163317366735551, 1.10605713476119079480259838507, 1.94377543123514766152516822837, 2.26052903083815587738649227849, 2.63289081188703848382747190153, 2.99004905331838308003568619485, 3.99105368593266749617840023358, 4.23917730801176553698487534301, 4.48925273948586296338615918432, 4.92906925361413416353411607223, 5.49619087486239944381125007344, 5.74906222594953493391441377177, 6.40355553839369254166287429616, 6.46654781869563031625894102157, 6.61833617184988910411403824790, 7.51981563924045934483629141209, 8.097714889068247609037348950572, 8.142490351811044314131412856339, 8.400399505010108897872101436719, 8.486807185866756808031225617644

Graph of the $Z$-function along the critical line