Properties

Label 4-3332e2-1.1-c1e2-0-4
Degree $4$
Conductor $11102224$
Sign $1$
Analytic cond. $707.887$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s + 2·9-s − 2·13-s + 15·15-s + 2·17-s + 4·19-s + 6·23-s + 10·25-s − 6·27-s + 10·29-s − 31-s − 6·37-s − 6·39-s − 9·41-s + 3·43-s + 10·45-s + 4·47-s + 6·51-s + 9·53-s + 12·57-s + 6·59-s + 5·61-s − 10·65-s + 67-s + 18·69-s − 14·71-s + ⋯
L(s)  = 1  + 1.73·3-s + 2.23·5-s + 2/3·9-s − 0.554·13-s + 3.87·15-s + 0.485·17-s + 0.917·19-s + 1.25·23-s + 2·25-s − 1.15·27-s + 1.85·29-s − 0.179·31-s − 0.986·37-s − 0.960·39-s − 1.40·41-s + 0.457·43-s + 1.49·45-s + 0.583·47-s + 0.840·51-s + 1.23·53-s + 1.58·57-s + 0.781·59-s + 0.640·61-s − 1.24·65-s + 0.122·67-s + 2.16·69-s − 1.66·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11102224\)    =    \(2^{4} \cdot 7^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(707.887\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11102224,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.259006692\)
\(L(\frac12)\) \(\approx\) \(9.259006692\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 - p T + 7 T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
5$C_4$ \( 1 - p T + 3 p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 6 T + 50 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 10 T + 78 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
31$C_4$ \( 1 + T - 39 T^{2} + p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 6 T + 38 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 9 T + 91 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 3 T + 77 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 9 T + 65 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 6 T + 122 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 5 T + 27 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - T + 103 T^{2} - p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 14 T + 186 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - T + 135 T^{2} - p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 10 T + 138 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 182 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 22 T + 294 T^{2} - 22 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - T + 183 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.879013673811184043608678615488, −8.724832633151008969326041321433, −8.016424666891161792444779543259, −7.939841840103145987156685408306, −7.21255838740300075668991186632, −7.15923958658699610569064113328, −6.47961626777573312058944839933, −6.29904525058262122446691698769, −5.63277144071430641358938984762, −5.52164488398356962041781308158, −4.91911535703869940747229027303, −4.88997697047779949498382368269, −3.94229319795948761347162377097, −3.50082886072682046288404034446, −3.07165925805224840936043531837, −2.73815711541078551966990732591, −2.33897299870422614144443771330, −2.02095606936778740314664235010, −1.43154103520227827629246674825, −0.820921076811590809590745864719, 0.820921076811590809590745864719, 1.43154103520227827629246674825, 2.02095606936778740314664235010, 2.33897299870422614144443771330, 2.73815711541078551966990732591, 3.07165925805224840936043531837, 3.50082886072682046288404034446, 3.94229319795948761347162377097, 4.88997697047779949498382368269, 4.91911535703869940747229027303, 5.52164488398356962041781308158, 5.63277144071430641358938984762, 6.29904525058262122446691698769, 6.47961626777573312058944839933, 7.15923958658699610569064113328, 7.21255838740300075668991186632, 7.939841840103145987156685408306, 8.016424666891161792444779543259, 8.724832633151008969326041321433, 8.879013673811184043608678615488

Graph of the $Z$-function along the critical line