Properties

Label 4-3332e2-1.1-c1e2-0-0
Degree $4$
Conductor $11102224$
Sign $1$
Analytic cond. $707.887$
Root an. cond. $5.15811$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 6·11-s − 4·13-s + 2·17-s − 4·19-s − 6·23-s + 2·25-s + 2·27-s + 2·31-s + 12·33-s + 16·37-s + 8·39-s + 12·41-s + 4·43-s − 4·51-s + 12·53-s + 8·57-s − 12·59-s + 8·61-s + 16·67-s + 12·69-s − 6·71-s − 4·73-s − 4·75-s − 14·79-s − 81-s + 12·83-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.80·11-s − 1.10·13-s + 0.485·17-s − 0.917·19-s − 1.25·23-s + 2/5·25-s + 0.384·27-s + 0.359·31-s + 2.08·33-s + 2.63·37-s + 1.28·39-s + 1.87·41-s + 0.609·43-s − 0.560·51-s + 1.64·53-s + 1.05·57-s − 1.56·59-s + 1.02·61-s + 1.95·67-s + 1.44·69-s − 0.712·71-s − 0.468·73-s − 0.461·75-s − 1.57·79-s − 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11102224\)    =    \(2^{4} \cdot 7^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(707.887\)
Root analytic conductor: \(5.15811\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11102224,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9941565531\)
\(L(\frac12)\) \(\approx\) \(0.9941565531\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 52 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 2 T + 36 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 16 T + 126 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 4 T - 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 12 T + 94 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 12 T + 142 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 8 T + 126 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 6 T + 124 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 + 14 T + 180 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 12 T + 190 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 12 T + 202 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 4 T + 150 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.818153318459398069101157941562, −8.313125117731867555096215164111, −7.953397023749231507545524513756, −7.57911304538136716773356308706, −7.56591157354505723402201413587, −6.94550373743976103990537032774, −6.33618070971745890198037535139, −6.18264218925600596420924077964, −5.65507509522548050914422598260, −5.53225517629595637057961942293, −5.17592102467986971930883989365, −4.52798599579234357266094980565, −4.34448104068425850990046901692, −3.98261627505997134413863762394, −3.01451360060443167709472917403, −2.77423330181519051161112403393, −2.34354982380820443903163491900, −1.91829352062359954694482555732, −0.70815586165099889238506353727, −0.49665332181083757423666218790, 0.49665332181083757423666218790, 0.70815586165099889238506353727, 1.91829352062359954694482555732, 2.34354982380820443903163491900, 2.77423330181519051161112403393, 3.01451360060443167709472917403, 3.98261627505997134413863762394, 4.34448104068425850990046901692, 4.52798599579234357266094980565, 5.17592102467986971930883989365, 5.53225517629595637057961942293, 5.65507509522548050914422598260, 6.18264218925600596420924077964, 6.33618070971745890198037535139, 6.94550373743976103990537032774, 7.56591157354505723402201413587, 7.57911304538136716773356308706, 7.953397023749231507545524513756, 8.313125117731867555096215164111, 8.818153318459398069101157941562

Graph of the $Z$-function along the critical line