Properties

Label 4-3332e2-1.1-c0e2-0-0
Degree $4$
Conductor $11102224$
Sign $1$
Analytic cond. $2.76518$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 8-s + 9-s − 4·13-s − 16-s − 17-s + 18-s − 25-s − 4·26-s − 34-s − 50-s − 2·53-s + 64-s − 72-s + 2·89-s + 2·101-s + 4·104-s − 2·106-s − 4·117-s + 121-s + 127-s + 128-s + 131-s + 136-s + 137-s + 139-s − 144-s + ⋯
L(s)  = 1  + 2-s − 8-s + 9-s − 4·13-s − 16-s − 17-s + 18-s − 25-s − 4·26-s − 34-s − 50-s − 2·53-s + 64-s − 72-s + 2·89-s + 2·101-s + 4·104-s − 2·106-s − 4·117-s + 121-s + 127-s + 128-s + 131-s + 136-s + 137-s + 139-s − 144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11102224\)    =    \(2^{4} \cdot 7^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2.76518\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11102224,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8999633700\)
\(L(\frac12)\) \(\approx\) \(0.8999633700\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
7 \( 1 \)
17$C_2$ \( 1 + T + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_1$ \( ( 1 + T )^{4} \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2^2$ \( 1 - T^{2} + T^{4} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2^2$ \( 1 - T^{2} + T^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.118221012211938747699426161632, −8.666240368694767713621973908942, −8.147287188195646889761782045648, −7.57318488192877308073674614286, −7.55801255485593888238791729295, −7.10413381048564031751491802937, −6.83823250939125812839740791210, −6.19367765564667667915382483722, −6.10221722846231853893072596094, −5.31762033894491866688723147196, −5.00527919875885398536363600171, −4.72767493214349438419493053847, −4.61226772355878742124274408018, −4.05679493636604253725648459282, −3.65039299881290295411485060490, −2.89528181419206752831906828286, −2.72259065586524609983632754041, −1.97053740060680400843865440243, −1.95152508359678581101723423990, −0.44385434784124211530261702712, 0.44385434784124211530261702712, 1.95152508359678581101723423990, 1.97053740060680400843865440243, 2.72259065586524609983632754041, 2.89528181419206752831906828286, 3.65039299881290295411485060490, 4.05679493636604253725648459282, 4.61226772355878742124274408018, 4.72767493214349438419493053847, 5.00527919875885398536363600171, 5.31762033894491866688723147196, 6.10221722846231853893072596094, 6.19367765564667667915382483722, 6.83823250939125812839740791210, 7.10413381048564031751491802937, 7.55801255485593888238791729295, 7.57318488192877308073674614286, 8.147287188195646889761782045648, 8.666240368694767713621973908942, 9.118221012211938747699426161632

Graph of the $Z$-function along the critical line