L(s) = 1 | − 2-s + 4-s + 2·5-s − 8-s − 3·9-s − 2·10-s − 4·11-s + 16-s + 2·17-s + 3·18-s + 2·20-s + 4·22-s − 6·25-s + 10·29-s − 32-s − 2·34-s − 3·36-s − 10·37-s − 2·40-s − 4·44-s − 6·45-s + 4·47-s + 6·49-s + 6·50-s − 8·55-s − 10·58-s − 2·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 9-s − 0.632·10-s − 1.20·11-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 0.447·20-s + 0.852·22-s − 6/5·25-s + 1.85·29-s − 0.176·32-s − 0.342·34-s − 1/2·36-s − 1.64·37-s − 0.316·40-s − 0.603·44-s − 0.894·45-s + 0.583·47-s + 6/7·49-s + 0.848·50-s − 1.07·55-s − 1.31·58-s − 0.256·61-s + ⋯ |
Λ(s)=(=(332928s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(332928s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
332928
= 27⋅32⋅172
|
Sign: |
−1
|
Analytic conductor: |
21.2277 |
Root analytic conductor: |
2.14647 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 332928, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 3 | C2 | 1+pT2 |
| 17 | C2 | 1−2T+pT2 |
good | 5 | C2×C2 | (1−2T+pT2)(1+pT2) |
| 7 | C22 | 1−6T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C22 | 1+14T2+p2T4 |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2×C2 | (1−8T+pT2)(1−2T+pT2) |
| 31 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 37 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 41 | C22 | 1−34T2+p2T4 |
| 43 | C22 | 1+38T2+p2T4 |
| 47 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 53 | C22 | 1+86T2+p2T4 |
| 59 | C22 | 1−110T2+p2T4 |
| 61 | C2×C2 | (1−8T+pT2)(1+10T+pT2) |
| 67 | C22 | 1−46T2+p2T4 |
| 71 | C22 | 1+82T2+p2T4 |
| 73 | C22 | 1+94T2+p2T4 |
| 79 | C22 | 1+10T2+p2T4 |
| 83 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 89 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 97 | C22 | 1+34T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.532816213622114096654551281017, −8.169314958115618812595298428598, −7.73559972440307903163711231802, −7.21711250154337967288393541385, −6.68155059850002947589758457202, −6.05940964516922099697910222066, −5.79905073177474180187832103866, −5.26787315094652639960258356084, −4.88544323044523213778601090587, −3.94261860012810658825455622412, −3.25182166272888509607356036238, −2.58739387145482707976838456612, −2.25694907809682576965960697336, −1.28168946633399086984930364789, 0,
1.28168946633399086984930364789, 2.25694907809682576965960697336, 2.58739387145482707976838456612, 3.25182166272888509607356036238, 3.94261860012810658825455622412, 4.88544323044523213778601090587, 5.26787315094652639960258356084, 5.79905073177474180187832103866, 6.05940964516922099697910222066, 6.68155059850002947589758457202, 7.21711250154337967288393541385, 7.73559972440307903163711231802, 8.169314958115618812595298428598, 8.532816213622114096654551281017