L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 8-s − 2·9-s + 3·11-s + 12-s + 16-s + 2·17-s + 2·18-s + 13·19-s − 3·22-s − 24-s − 25-s − 5·27-s − 32-s + 3·33-s − 2·34-s − 2·36-s − 13·38-s − 9·41-s + 10·43-s + 3·44-s + 48-s + 2·49-s + 50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.904·11-s + 0.288·12-s + 1/4·16-s + 0.485·17-s + 0.471·18-s + 2.98·19-s − 0.639·22-s − 0.204·24-s − 1/5·25-s − 0.962·27-s − 0.176·32-s + 0.522·33-s − 0.342·34-s − 1/3·36-s − 2.10·38-s − 1.40·41-s + 1.52·43-s + 0.452·44-s + 0.144·48-s + 2/7·49-s + 0.141·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332928 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.742490761\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.742490761\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 + T \) |
| 3 | $C_2$ | \( 1 - T + p T^{2} \) |
| 17 | $C_1$ | \( ( 1 - T )^{2} \) |
good | 5 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \) |
| 13 | $C_2^2$ | \( 1 - 8 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 - 5 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2^2$ | \( 1 + 52 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 + 40 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 + 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 47 | $C_2^2$ | \( 1 - 41 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) |
| 61 | $C_2^2$ | \( 1 + 64 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 - 65 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 79 | $C_2^2$ | \( 1 - 104 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + 7 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.811723905003011103122611844500, −8.299723172721116686868063741437, −7.902852090151395082219190081451, −7.51484488236082419263154063767, −6.97734156839502383447163376907, −6.67656822009036057836582092526, −5.78471426664507380287748963755, −5.54106422056457365540611603194, −5.11134632508443097815544755241, −4.09667539209628389133032262247, −3.61064246603099029136454278537, −3.07179752345030561285851433629, −2.57859676972452693967934789690, −1.60438834038346562981574728033, −0.883374070888861306142233225682,
0.883374070888861306142233225682, 1.60438834038346562981574728033, 2.57859676972452693967934789690, 3.07179752345030561285851433629, 3.61064246603099029136454278537, 4.09667539209628389133032262247, 5.11134632508443097815544755241, 5.54106422056457365540611603194, 5.78471426664507380287748963755, 6.67656822009036057836582092526, 6.97734156839502383447163376907, 7.51484488236082419263154063767, 7.902852090151395082219190081451, 8.299723172721116686868063741437, 8.811723905003011103122611844500