Properties

Label 4-325e2-1.1-c1e2-0-12
Degree $4$
Conductor $105625$
Sign $1$
Analytic cond. $6.73474$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·4-s + 4·7-s + 2·9-s − 2·11-s − 6·12-s + 4·13-s + 5·16-s + 2·17-s + 10·19-s − 8·21-s + 6·23-s − 6·27-s + 12·28-s + 10·31-s + 4·33-s + 6·36-s − 8·39-s − 14·41-s − 2·43-s − 6·44-s − 12·47-s − 10·48-s − 2·49-s − 4·51-s + 12·52-s − 10·53-s + ⋯
L(s)  = 1  − 1.15·3-s + 3/2·4-s + 1.51·7-s + 2/3·9-s − 0.603·11-s − 1.73·12-s + 1.10·13-s + 5/4·16-s + 0.485·17-s + 2.29·19-s − 1.74·21-s + 1.25·23-s − 1.15·27-s + 2.26·28-s + 1.79·31-s + 0.696·33-s + 36-s − 1.28·39-s − 2.18·41-s − 0.304·43-s − 0.904·44-s − 1.75·47-s − 1.44·48-s − 2/7·49-s − 0.560·51-s + 1.66·52-s − 1.37·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(105625\)    =    \(5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(6.73474\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 105625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.989664123\)
\(L(\frac12)\) \(\approx\) \(1.989664123\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
13$C_2$ \( 1 - 4 T + p T^{2} \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 154 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.59263846417408964018128818610, −11.49877995026866319420390841576, −11.01293290014164402462558776367, −10.82669726838418579362701549665, −10.05127028613271994248561309330, −9.873443212325966159410298061836, −9.050008011406213315356624561879, −8.253305675688649284095761861164, −7.87155574364968762775767305140, −7.67109668290368276829886412309, −6.75376157360806958794585756715, −6.68892470576552616216444542324, −5.92458878441165171090142572011, −5.35802131020787838166673963893, −5.10467461181155124744900307917, −4.50679979538928923128421638146, −3.20387542892187851939078231485, −3.05605240781393840939190521912, −1.56913327172388475004175740625, −1.38698629632226783143308340965, 1.38698629632226783143308340965, 1.56913327172388475004175740625, 3.05605240781393840939190521912, 3.20387542892187851939078231485, 4.50679979538928923128421638146, 5.10467461181155124744900307917, 5.35802131020787838166673963893, 5.92458878441165171090142572011, 6.68892470576552616216444542324, 6.75376157360806958794585756715, 7.67109668290368276829886412309, 7.87155574364968762775767305140, 8.253305675688649284095761861164, 9.050008011406213315356624561879, 9.873443212325966159410298061836, 10.05127028613271994248561309330, 10.82669726838418579362701549665, 11.01293290014164402462558776367, 11.49877995026866319420390841576, 11.59263846417408964018128818610

Graph of the $Z$-function along the critical line