| L(s) = 1 | + 4·4-s + 5·9-s − 12·11-s + 12·16-s + 8·19-s + 6·29-s − 8·31-s + 20·36-s + 12·41-s − 48·44-s − 2·49-s + 12·59-s − 2·61-s + 32·64-s − 12·71-s + 32·76-s − 22·79-s + 16·81-s − 60·99-s − 30·101-s − 4·109-s + 24·116-s + 86·121-s − 32·124-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 2·4-s + 5/3·9-s − 3.61·11-s + 3·16-s + 1.83·19-s + 1.11·29-s − 1.43·31-s + 10/3·36-s + 1.87·41-s − 7.23·44-s − 2/7·49-s + 1.56·59-s − 0.256·61-s + 4·64-s − 1.42·71-s + 3.67·76-s − 2.47·79-s + 16/9·81-s − 6.03·99-s − 2.98·101-s − 0.383·109-s + 2.22·116-s + 7.81·121-s − 2.87·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.522027340\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.522027340\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72804645703094848947143972813, −11.28056960963013248711479131282, −10.87570316973455003894197143237, −10.38532992459382960078819564760, −10.17886255147936818805253913674, −9.942892024981197959889933819692, −9.155262343305100798286275974271, −8.083720860975592525034512941519, −7.85186770058065637042496647655, −7.57271774595739394408636961578, −7.07307005488618920370399863771, −6.84822816718476129432659610580, −5.70478599014574589119459369342, −5.61468073661378941204387736572, −5.07024791076197818923230671886, −4.21315269890944364716835223631, −3.15058073148390548229671054324, −2.78273445202813028289465280478, −2.22500974514134351030333953752, −1.26623473151111815808494300679,
1.26623473151111815808494300679, 2.22500974514134351030333953752, 2.78273445202813028289465280478, 3.15058073148390548229671054324, 4.21315269890944364716835223631, 5.07024791076197818923230671886, 5.61468073661378941204387736572, 5.70478599014574589119459369342, 6.84822816718476129432659610580, 7.07307005488618920370399863771, 7.57271774595739394408636961578, 7.85186770058065637042496647655, 8.083720860975592525034512941519, 9.155262343305100798286275974271, 9.942892024981197959889933819692, 10.17886255147936818805253913674, 10.38532992459382960078819564760, 10.87570316973455003894197143237, 11.28056960963013248711479131282, 11.72804645703094848947143972813