Properties

Label 4-3240e2-1.1-c1e2-0-9
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $669.336$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 8·11-s + 14·19-s + 11·25-s − 16·29-s + 12·31-s − 2·41-s − 11·49-s − 32·55-s − 6·59-s − 20·61-s − 8·71-s − 8·79-s − 36·89-s + 56·95-s + 12·101-s + 24·109-s + 26·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + 151-s + 48·155-s + ⋯
L(s)  = 1  + 1.78·5-s − 2.41·11-s + 3.21·19-s + 11/5·25-s − 2.97·29-s + 2.15·31-s − 0.312·41-s − 1.57·49-s − 4.31·55-s − 0.781·59-s − 2.56·61-s − 0.949·71-s − 0.900·79-s − 3.81·89-s + 5.74·95-s + 1.19·101-s + 2.29·109-s + 2.36·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + 0.0813·151-s + 3.85·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(669.336\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.658767722\)
\(L(\frac12)\) \(\approx\) \(2.658767722\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 81 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.947137787877985891771570913860, −8.357812896801854752480663228058, −8.161017441399455717768131971822, −7.46466925131181425043059962738, −7.45216427777512174578570722263, −7.24277567080354671463052156775, −6.44429046507735316524429438879, −6.06576980139572232381467260702, −5.68962111685535430054148541777, −5.40071207170233715028396805373, −5.30542858505136464101172176621, −4.65933381136888410786771622689, −4.51087437057785503057708849028, −3.41165444435760949160487150610, −3.00550711491933329347810071062, −2.96927021186807641477948940295, −2.37694314774657893475348858799, −1.57497393220846331868952268350, −1.53306319333047932739004716543, −0.47923739264543321685523704449, 0.47923739264543321685523704449, 1.53306319333047932739004716543, 1.57497393220846331868952268350, 2.37694314774657893475348858799, 2.96927021186807641477948940295, 3.00550711491933329347810071062, 3.41165444435760949160487150610, 4.51087437057785503057708849028, 4.65933381136888410786771622689, 5.30542858505136464101172176621, 5.40071207170233715028396805373, 5.68962111685535430054148541777, 6.06576980139572232381467260702, 6.44429046507735316524429438879, 7.24277567080354671463052156775, 7.45216427777512174578570722263, 7.46466925131181425043059962738, 8.161017441399455717768131971822, 8.357812896801854752480663228058, 8.947137787877985891771570913860

Graph of the $Z$-function along the critical line