L(s) = 1 | + 2·5-s + 2·7-s + 4·17-s − 4·19-s + 10·23-s + 3·25-s − 6·29-s + 12·31-s + 4·35-s − 12·37-s + 10·41-s + 4·43-s + 14·47-s − 5·49-s + 4·53-s + 12·59-s − 6·61-s − 2·67-s + 8·73-s − 4·79-s + 6·83-s + 8·85-s + 14·89-s − 8·95-s + 4·97-s + 4·101-s + 20·103-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.755·7-s + 0.970·17-s − 0.917·19-s + 2.08·23-s + 3/5·25-s − 1.11·29-s + 2.15·31-s + 0.676·35-s − 1.97·37-s + 1.56·41-s + 0.609·43-s + 2.04·47-s − 5/7·49-s + 0.549·53-s + 1.56·59-s − 0.768·61-s − 0.244·67-s + 0.936·73-s − 0.450·79-s + 0.658·83-s + 0.867·85-s + 1.48·89-s − 0.820·95-s + 0.406·97-s + 0.398·101-s + 1.97·103-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10497600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
669.336 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.792890515 |
L(21) |
≈ |
4.792890515 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
good | 7 | D4 | 1−2T+9T2−2pT3+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 23 | D4 | 1−10T+65T2−10pT3+p2T4 |
| 29 | D4 | 1+6T+43T2+6pT3+p2T4 |
| 31 | D4 | 1−12T+74T2−12pT3+p2T4 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | D4 | 1−10T+83T2−10pT3+p2T4 |
| 43 | D4 | 1−4T−6T2−4pT3+p2T4 |
| 47 | D4 | 1−14T+137T2−14pT3+p2T4 |
| 53 | D4 | 1−4T+14T2−4pT3+p2T4 |
| 59 | D4 | 1−12T+130T2−12pT3+p2T4 |
| 61 | C2 | (1+3T+pT2)2 |
| 67 | D4 | 1+2T−15T2+2pT3+p2T4 |
| 71 | C22 | 1+46T2+p2T4 |
| 73 | D4 | 1−8T+66T2−8pT3+p2T4 |
| 79 | D4 | 1+4T+138T2+4pT3+p2T4 |
| 83 | D4 | 1−6T+169T2−6pT3+p2T4 |
| 89 | D4 | 1−14T+131T2−14pT3+p2T4 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.810094473244902225863958671273, −8.708854249634062873437283848740, −7.923685810313280565397389556111, −7.86872472112905429783454606288, −7.29561105727588080836615868616, −7.05642717890901162506008104396, −6.46727990629738871001075173803, −6.32629228830983142066046800463, −5.59886534851593283043038125112, −5.56554023586073573580900961129, −4.99341645588020936344215002534, −4.76715643472403162551356374357, −4.18775743972261135793208126128, −3.81827485177166097005396021959, −3.08777468354378049008845670357, −2.88796835386999305826815644374, −2.07683890516739483340949947699, −2.00506994364080859634970460265, −1.01004956177176863900695628427, −0.841177527231864577721067200852,
0.841177527231864577721067200852, 1.01004956177176863900695628427, 2.00506994364080859634970460265, 2.07683890516739483340949947699, 2.88796835386999305826815644374, 3.08777468354378049008845670357, 3.81827485177166097005396021959, 4.18775743972261135793208126128, 4.76715643472403162551356374357, 4.99341645588020936344215002534, 5.56554023586073573580900961129, 5.59886534851593283043038125112, 6.32629228830983142066046800463, 6.46727990629738871001075173803, 7.05642717890901162506008104396, 7.29561105727588080836615868616, 7.86872472112905429783454606288, 7.923685810313280565397389556111, 8.708854249634062873437283848740, 8.810094473244902225863958671273