Properties

Label 4-3240e2-1.1-c1e2-0-23
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $669.336$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 8·11-s + 14·19-s + 11·25-s + 16·29-s + 12·31-s + 2·41-s − 11·49-s − 32·55-s + 6·59-s − 20·61-s + 8·71-s − 8·79-s + 36·89-s − 56·95-s − 12·101-s + 24·109-s + 26·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + 151-s − 48·155-s + ⋯
L(s)  = 1  − 1.78·5-s + 2.41·11-s + 3.21·19-s + 11/5·25-s + 2.97·29-s + 2.15·31-s + 0.312·41-s − 1.57·49-s − 4.31·55-s + 0.781·59-s − 2.56·61-s + 0.949·71-s − 0.900·79-s + 3.81·89-s − 5.74·95-s − 1.19·101-s + 2.29·109-s + 2.36·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + 0.0813·151-s − 3.85·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(669.336\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.146343996\)
\(L(\frac12)\) \(\approx\) \(3.146343996\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 81 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.942849650722421386068305288317, −8.276762096577964556977062174990, −8.122363914215625404509134907329, −7.77579063357639884124368843227, −7.38033383980527697006230033056, −7.02511229787380944644404450095, −6.54902217043252638088100068813, −6.37100990275788189639824573582, −6.07702857582457450779528451176, −5.09748967704765382424665637500, −4.99346641996509709966668455258, −4.48572990879663811298662254339, −4.26461682711633204992295064241, −3.65594157796337916906888451346, −3.23988083663932460683747761151, −3.14350044318165741166100186621, −2.53587172005214100289893803273, −1.32487325532347433708638408481, −1.11993476585825243543626752281, −0.72551168355155893685546516186, 0.72551168355155893685546516186, 1.11993476585825243543626752281, 1.32487325532347433708638408481, 2.53587172005214100289893803273, 3.14350044318165741166100186621, 3.23988083663932460683747761151, 3.65594157796337916906888451346, 4.26461682711633204992295064241, 4.48572990879663811298662254339, 4.99346641996509709966668455258, 5.09748967704765382424665637500, 6.07702857582457450779528451176, 6.37100990275788189639824573582, 6.54902217043252638088100068813, 7.02511229787380944644404450095, 7.38033383980527697006230033056, 7.77579063357639884124368843227, 8.122363914215625404509134907329, 8.276762096577964556977062174990, 8.942849650722421386068305288317

Graph of the $Z$-function along the critical line