L(s) = 1 | − 2-s + 5-s + 8-s − 10-s − 16-s + 2·19-s − 23-s + 3·31-s − 2·38-s + 40-s + 46-s − 2·47-s + 49-s − 2·53-s − 3·61-s − 3·62-s + 64-s + 3·79-s − 80-s + 3·83-s + 2·94-s + 2·95-s − 98-s + 2·106-s − 115-s + 121-s + 3·122-s + ⋯ |
L(s) = 1 | − 2-s + 5-s + 8-s − 10-s − 16-s + 2·19-s − 23-s + 3·31-s − 2·38-s + 40-s + 46-s − 2·47-s + 49-s − 2·53-s − 3·61-s − 3·62-s + 64-s + 3·79-s − 80-s + 3·83-s + 2·94-s + 2·95-s − 98-s + 2·106-s − 115-s + 121-s + 3·122-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2.61459 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.9847161632 |
L(21) |
≈ |
0.9847161632 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | | 1 |
| 5 | C2 | 1−T+T2 |
good | 7 | C22 | 1−T2+T4 |
| 11 | C22 | 1−T2+T4 |
| 13 | C22 | 1−T2+T4 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C2 | (1−T+T2)2 |
| 23 | C1×C2 | (1+T)2(1−T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C1×C2 | (1−T)2(1−T+T2) |
| 37 | C2 | (1+T2)2 |
| 41 | C22 | 1−T2+T4 |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C2 | (1+T+T2)2 |
| 53 | C2 | (1+T+T2)2 |
| 59 | C22 | 1−T2+T4 |
| 61 | C1×C2 | (1+T)2(1+T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C1×C2 | (1−T)2(1−T+T2) |
| 83 | C1×C2 | (1−T)2(1−T+T2) |
| 89 | C2 | (1+T2)2 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.114380424932356413029279956265, −8.774639717621336695108187650658, −8.063613244514016110045635227022, −7.964293178622560157125849434103, −7.83330835762579070760500838464, −7.35701975827551266653767395344, −6.62366266728923752217915642105, −6.52888064506062083826810214654, −6.09157546690649956605185555807, −5.74538172411086929913050377280, −5.07868091854618054292975873012, −4.84980638737296705692982102553, −4.60308608784609179346475750161, −3.95428718467989718258389281024, −3.24176508697820678014290675531, −3.12133694147074461780703827854, −2.33271783431510951357366550408, −1.87788608412848438253145007340, −1.35224497254611265376290807971, −0.78878678362419557792982122383,
0.78878678362419557792982122383, 1.35224497254611265376290807971, 1.87788608412848438253145007340, 2.33271783431510951357366550408, 3.12133694147074461780703827854, 3.24176508697820678014290675531, 3.95428718467989718258389281024, 4.60308608784609179346475750161, 4.84980638737296705692982102553, 5.07868091854618054292975873012, 5.74538172411086929913050377280, 6.09157546690649956605185555807, 6.52888064506062083826810214654, 6.62366266728923752217915642105, 7.35701975827551266653767395344, 7.83330835762579070760500838464, 7.964293178622560157125849434103, 8.063613244514016110045635227022, 8.774639717621336695108187650658, 9.114380424932356413029279956265