Properties

Label 4-3240e2-1.1-c0e2-0-8
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 5-s + 8-s + 10-s + 11-s + 13-s − 16-s − 2·17-s − 22-s + 23-s − 26-s + 29-s + 31-s + 2·34-s + 4·37-s − 40-s + 43-s − 46-s + 47-s − 49-s − 55-s − 58-s − 2·59-s − 62-s + 64-s − 65-s − 2·67-s + ⋯
L(s)  = 1  − 2-s − 5-s + 8-s + 10-s + 11-s + 13-s − 16-s − 2·17-s − 22-s + 23-s − 26-s + 29-s + 31-s + 2·34-s + 4·37-s − 40-s + 43-s − 46-s + 47-s − 49-s − 55-s − 58-s − 2·59-s − 62-s + 64-s − 65-s − 2·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6956970659\)
\(L(\frac12)\) \(\approx\) \(0.6956970659\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T + T^{2} \)
good7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 + T + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
37$C_1$ \( ( 1 - T )^{4} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.979740708451834896787522880861, −8.847256767773727751890504112691, −8.147067349588260427593720587206, −8.125122896397652423286717724036, −7.55553668859962581290153335529, −7.43696523056642020355814386797, −6.78727251764810709667060603029, −6.50345091691485241019866969658, −6.03697320626069672989523305737, −6.00436858070578905170730733991, −4.99029092266473846364041982977, −4.46155957936761238878387134206, −4.38705127956497898877064514643, −4.24468236848494426573252661155, −3.53924594738823898427324411818, −2.95879858435625949332144194527, −2.53906348411582632998367519298, −1.85521153533964803228598516297, −1.11556314710997276798060699167, −0.74772087896610239237699025109, 0.74772087896610239237699025109, 1.11556314710997276798060699167, 1.85521153533964803228598516297, 2.53906348411582632998367519298, 2.95879858435625949332144194527, 3.53924594738823898427324411818, 4.24468236848494426573252661155, 4.38705127956497898877064514643, 4.46155957936761238878387134206, 4.99029092266473846364041982977, 6.00436858070578905170730733991, 6.03697320626069672989523305737, 6.50345091691485241019866969658, 6.78727251764810709667060603029, 7.43696523056642020355814386797, 7.55553668859962581290153335529, 8.125122896397652423286717724036, 8.147067349588260427593720587206, 8.847256767773727751890504112691, 8.979740708451834896787522880861

Graph of the $Z$-function along the critical line