Properties

Label 4-3240e2-1.1-c0e2-0-5
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5-s + 8-s − 10-s − 16-s − 4·19-s + 2·23-s + 4·38-s + 40-s − 2·46-s − 2·47-s + 49-s + 4·53-s + 64-s − 80-s + 2·94-s − 4·95-s − 98-s − 4·106-s + 2·115-s + 121-s − 125-s + 127-s − 128-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 2-s + 5-s + 8-s − 10-s − 16-s − 4·19-s + 2·23-s + 4·38-s + 40-s − 2·46-s − 2·47-s + 49-s + 4·53-s + 64-s − 80-s + 2·94-s − 4·95-s − 98-s − 4·106-s + 2·115-s + 121-s − 125-s + 127-s − 128-s + 131-s + 137-s + 139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7161931501\)
\(L(\frac12)\) \(\approx\) \(0.7161931501\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
good7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$ \( ( 1 + T )^{4} \)
23$C_2$ \( ( 1 - T + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 + T + T^{2} )^{2} \)
53$C_1$ \( ( 1 - T )^{4} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.126653581760277880401808758774, −8.483802143388496471925786861488, −8.432555844609891135087778009843, −8.336888969505069459065654362275, −7.50100168289508229358595974334, −7.09814478025472966020028642326, −6.93266629202465018730620839480, −6.39125752813791901934506720462, −6.20679650971519158008739867262, −5.64562351207714329062667331361, −5.25819103182268195158043059908, −4.69389913923892919377927679603, −4.53804745236463145892881354344, −3.85415568563204848984734140095, −3.73124604204218145545801301187, −2.55805183169718558237202479785, −2.52820089214732696689282056988, −1.91957945246847552304129766681, −1.48004265556516971857384498110, −0.61504744121511205893253176862, 0.61504744121511205893253176862, 1.48004265556516971857384498110, 1.91957945246847552304129766681, 2.52820089214732696689282056988, 2.55805183169718558237202479785, 3.73124604204218145545801301187, 3.85415568563204848984734140095, 4.53804745236463145892881354344, 4.69389913923892919377927679603, 5.25819103182268195158043059908, 5.64562351207714329062667331361, 6.20679650971519158008739867262, 6.39125752813791901934506720462, 6.93266629202465018730620839480, 7.09814478025472966020028642326, 7.50100168289508229358595974334, 8.336888969505069459065654362275, 8.432555844609891135087778009843, 8.483802143388496471925786861488, 9.126653581760277880401808758774

Graph of the $Z$-function along the critical line