Properties

Label 4-3240e2-1.1-c0e2-0-3
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5-s + 8-s − 10-s − 11-s − 13-s − 16-s − 2·17-s + 22-s + 23-s + 26-s − 29-s + 31-s + 2·34-s − 4·37-s + 40-s − 43-s − 46-s + 47-s − 49-s − 55-s + 58-s + 2·59-s − 62-s + 64-s − 65-s + 2·67-s + ⋯
L(s)  = 1  − 2-s + 5-s + 8-s − 10-s − 11-s − 13-s − 16-s − 2·17-s + 22-s + 23-s + 26-s − 29-s + 31-s + 2·34-s − 4·37-s + 40-s − 43-s − 46-s + 47-s − 49-s − 55-s + 58-s + 2·59-s − 62-s + 64-s − 65-s + 2·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4296834874\)
\(L(\frac12)\) \(\approx\) \(0.4296834874\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
good7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
17$C_2$ \( ( 1 + T + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
37$C_1$ \( ( 1 + T )^{4} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.067042929703856636288672322902, −8.536995632400850000115093830754, −8.453653159677570187174207579985, −8.186921106169253930510932042461, −7.38973233283220143214869712989, −7.11382867356695623465213506854, −7.09740091834331479366786297305, −6.42039318673403441028219751063, −6.25646073826014993535611414877, −5.29391189981654398968661497272, −5.16384300675554929154509548313, −5.10179098569669817114853987564, −4.56780495873831782646466257111, −3.74451570577425587629406938305, −3.69247992007079660168033112125, −2.61451903850541710074882236799, −2.50195402673133539025340630028, −1.85718105529215349721674279729, −1.62701644104950975271333890849, −0.44841016151069281578945038242, 0.44841016151069281578945038242, 1.62701644104950975271333890849, 1.85718105529215349721674279729, 2.50195402673133539025340630028, 2.61451903850541710074882236799, 3.69247992007079660168033112125, 3.74451570577425587629406938305, 4.56780495873831782646466257111, 5.10179098569669817114853987564, 5.16384300675554929154509548313, 5.29391189981654398968661497272, 6.25646073826014993535611414877, 6.42039318673403441028219751063, 7.09740091834331479366786297305, 7.11382867356695623465213506854, 7.38973233283220143214869712989, 8.186921106169253930510932042461, 8.453653159677570187174207579985, 8.536995632400850000115093830754, 9.067042929703856636288672322902

Graph of the $Z$-function along the critical line