Properties

Label 4-3240e2-1.1-c0e2-0-11
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·11-s − 2·23-s + 3·25-s + 2·31-s + 2·37-s − 2·41-s + 2·43-s + 2·47-s − 4·55-s + 2·67-s + 2·71-s + 2·83-s − 2·97-s + 2·101-s + 2·103-s + 2·107-s + 4·115-s + 121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·155-s + ⋯
L(s)  = 1  − 2·5-s + 2·11-s − 2·23-s + 3·25-s + 2·31-s + 2·37-s − 2·41-s + 2·43-s + 2·47-s − 4·55-s + 2·67-s + 2·71-s + 2·83-s − 2·97-s + 2·101-s + 2·103-s + 2·107-s + 4·115-s + 121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.171809959\)
\(L(\frac12)\) \(\approx\) \(1.171809959\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$C_2^2$ \( 1 + T^{4} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2^2$ \( 1 + T^{4} \)
17$C_2^2$ \( 1 + T^{4} \)
19$C_2^2$ \( 1 - T^{2} + T^{4} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 - T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
41$C_2$ \( ( 1 + T + T^{2} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.777362199449354981429506453265, −8.676756732960514877934253253136, −8.105924723056489964935689644099, −8.083620340777924822969344459628, −7.49471436028805230598606804052, −7.32499834147698904851577333336, −6.66332884956098550923252036595, −6.58514961415288816056875635274, −6.01944252265497369817833712457, −5.87215468540369274275750694911, −4.85674664331473096631339434902, −4.78124692557483828853010400450, −4.11135242795724782348335774594, −4.09223761042493501301846388077, −3.53514929606978651006794279744, −3.40691136244679509257435966282, −2.36223415565357696474986307221, −2.29999990034130846099545278391, −1.02092110057465979836534528953, −0.884774419936471199632935260158, 0.884774419936471199632935260158, 1.02092110057465979836534528953, 2.29999990034130846099545278391, 2.36223415565357696474986307221, 3.40691136244679509257435966282, 3.53514929606978651006794279744, 4.09223761042493501301846388077, 4.11135242795724782348335774594, 4.78124692557483828853010400450, 4.85674664331473096631339434902, 5.87215468540369274275750694911, 6.01944252265497369817833712457, 6.58514961415288816056875635274, 6.66332884956098550923252036595, 7.32499834147698904851577333336, 7.49471436028805230598606804052, 8.083620340777924822969344459628, 8.105924723056489964935689644099, 8.676756732960514877934253253136, 8.777362199449354981429506453265

Graph of the $Z$-function along the critical line