Properties

Label 4-320e2-1.1-c1e2-0-45
Degree $4$
Conductor $102400$
Sign $-1$
Analytic cond. $6.52911$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·9-s − 4·11-s − 12·19-s − 25-s − 4·29-s − 4·41-s − 4·45-s + 6·49-s − 8·55-s − 4·59-s − 12·61-s − 8·71-s + 16·79-s − 5·81-s + 4·89-s − 24·95-s + 8·99-s + 12·101-s + 20·109-s − 6·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + ⋯
L(s)  = 1  + 0.894·5-s − 2/3·9-s − 1.20·11-s − 2.75·19-s − 1/5·25-s − 0.742·29-s − 0.624·41-s − 0.596·45-s + 6/7·49-s − 1.07·55-s − 0.520·59-s − 1.53·61-s − 0.949·71-s + 1.80·79-s − 5/9·81-s + 0.423·89-s − 2.46·95-s + 0.804·99-s + 1.19·101-s + 1.91·109-s − 0.545·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(6.52911\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 102400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.053741841487707353882126684056, −8.990015121740525383648379496576, −8.373164867544173382186980638339, −7.87156441916130722244009057393, −7.41031075946135687926852450580, −6.61127426785943061529500519900, −6.15692190774184236929415211667, −5.83117384836379108269028934953, −5.18695218824486532825846447060, −4.62582934312640197935671693414, −3.95524337065984516997232290540, −3.07982062010987887626317506271, −2.32406872197087040622380442993, −1.89724448843746106184694344043, 0, 1.89724448843746106184694344043, 2.32406872197087040622380442993, 3.07982062010987887626317506271, 3.95524337065984516997232290540, 4.62582934312640197935671693414, 5.18695218824486532825846447060, 5.83117384836379108269028934953, 6.15692190774184236929415211667, 6.61127426785943061529500519900, 7.41031075946135687926852450580, 7.87156441916130722244009057393, 8.373164867544173382186980638339, 8.990015121740525383648379496576, 9.053741841487707353882126684056

Graph of the $Z$-function along the critical line