Properties

Label 4-320e2-1.1-c1e2-0-32
Degree $4$
Conductor $102400$
Sign $-1$
Analytic cond. $6.52911$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·9-s + 4·13-s + 4·17-s + 3·25-s + 4·29-s − 12·37-s − 12·41-s + 12·45-s + 2·49-s − 12·53-s + 4·61-s − 8·65-s − 12·73-s + 27·81-s − 8·85-s − 12·89-s − 28·97-s − 12·101-s − 28·109-s + 36·113-s − 24·117-s − 6·121-s − 4·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 0.894·5-s − 2·9-s + 1.10·13-s + 0.970·17-s + 3/5·25-s + 0.742·29-s − 1.97·37-s − 1.87·41-s + 1.78·45-s + 2/7·49-s − 1.64·53-s + 0.512·61-s − 0.992·65-s − 1.40·73-s + 3·81-s − 0.867·85-s − 1.27·89-s − 2.84·97-s − 1.19·101-s − 2.68·109-s + 3.38·113-s − 2.21·117-s − 0.545·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(6.52911\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 102400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.206637608661514184739644068270, −8.438761280447847026288494531448, −8.421702762202697929017375581976, −8.187189248591461729679142296814, −7.28963827504896405934712065825, −6.81982863783073968912914119025, −6.22671236180701133336548488807, −5.61529786752672156928392151688, −5.28966562607622137666656232279, −4.55607707806255331316875895933, −3.64413717916439174649981742998, −3.31415635628336508949565358363, −2.75667504176180688667939525456, −1.46465509347525672726427035614, 0, 1.46465509347525672726427035614, 2.75667504176180688667939525456, 3.31415635628336508949565358363, 3.64413717916439174649981742998, 4.55607707806255331316875895933, 5.28966562607622137666656232279, 5.61529786752672156928392151688, 6.22671236180701133336548488807, 6.81982863783073968912914119025, 7.28963827504896405934712065825, 8.187189248591461729679142296814, 8.421702762202697929017375581976, 8.438761280447847026288494531448, 9.206637608661514184739644068270

Graph of the $Z$-function along the critical line