Properties

Label 4-320e2-1.1-c1e2-0-26
Degree $4$
Conductor $102400$
Sign $1$
Analytic cond. $6.52911$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·9-s + 8·11-s + 8·19-s − 5·25-s − 8·41-s − 12·49-s − 8·59-s + 7·81-s − 20·89-s + 32·99-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 32·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 4/3·9-s + 2.41·11-s + 1.83·19-s − 25-s − 1.24·41-s − 1.71·49-s − 1.04·59-s + 7/9·81-s − 2.11·89-s + 3.21·99-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s + 2.44·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(6.52911\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 102400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.045566446\)
\(L(\frac12)\) \(\approx\) \(2.045566446\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 116 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 116 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.492145005524644581419204907183, −9.259953961191273037472458249838, −8.706057339068476228228914227644, −7.947470639976786649413810114469, −7.56492881264223558859965576957, −6.94689891079810729302879452712, −6.63526053175134611126268575953, −6.14310880692488235388664324701, −5.38232374102322462780013691926, −4.77106048101072822467454622478, −4.08585469047665265203190542845, −3.73504650301694856505325517371, −3.04958756569929439404384459686, −1.64627649489070351797670108230, −1.32387355902478111938396650349, 1.32387355902478111938396650349, 1.64627649489070351797670108230, 3.04958756569929439404384459686, 3.73504650301694856505325517371, 4.08585469047665265203190542845, 4.77106048101072822467454622478, 5.38232374102322462780013691926, 6.14310880692488235388664324701, 6.63526053175134611126268575953, 6.94689891079810729302879452712, 7.56492881264223558859965576957, 7.947470639976786649413810114469, 8.706057339068476228228914227644, 9.259953961191273037472458249838, 9.492145005524644581419204907183

Graph of the $Z$-function along the critical line