Properties

Label 4-320e2-1.1-c1e2-0-22
Degree $4$
Conductor $102400$
Sign $1$
Analytic cond. $6.52911$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·9-s + 12·13-s + 4·17-s + 3·25-s + 4·29-s − 4·37-s − 20·41-s − 4·45-s − 10·49-s − 4·53-s − 4·61-s + 24·65-s + 20·73-s − 5·81-s + 8·85-s − 12·89-s + 20·97-s − 28·101-s + 28·109-s − 12·113-s − 24·117-s − 6·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.894·5-s − 2/3·9-s + 3.32·13-s + 0.970·17-s + 3/5·25-s + 0.742·29-s − 0.657·37-s − 3.12·41-s − 0.596·45-s − 1.42·49-s − 0.549·53-s − 0.512·61-s + 2.97·65-s + 2.34·73-s − 5/9·81-s + 0.867·85-s − 1.27·89-s + 2.03·97-s − 2.78·101-s + 2.68·109-s − 1.12·113-s − 2.21·117-s − 0.545·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(6.52911\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 102400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.052262224\)
\(L(\frac12)\) \(\approx\) \(2.052262224\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.613228912214399908431984206107, −8.781404856404838385729722537924, −8.714543115468972113059546452375, −8.239480380770897255724570167213, −7.78598962640623119361177800709, −6.60040674980892955704654655808, −6.59250531831024987949367010419, −6.06254412327818625828699807195, −5.42261684437556226200264710088, −5.12441036610944036341041015255, −4.09416326053364009314265749502, −3.28314496469795666027926296042, −3.23319368204924250795089625252, −1.81188448910292297689023276847, −1.23403073899346067943514724338, 1.23403073899346067943514724338, 1.81188448910292297689023276847, 3.23319368204924250795089625252, 3.28314496469795666027926296042, 4.09416326053364009314265749502, 5.12441036610944036341041015255, 5.42261684437556226200264710088, 6.06254412327818625828699807195, 6.59250531831024987949367010419, 6.60040674980892955704654655808, 7.78598962640623119361177800709, 8.239480380770897255724570167213, 8.714543115468972113059546452375, 8.781404856404838385729722537924, 9.613228912214399908431984206107

Graph of the $Z$-function along the critical line