L(s) = 1 | − 5-s − 2·9-s + 8·19-s + 25-s + 12·29-s + 8·31-s + 12·41-s + 2·45-s − 10·49-s − 24·59-s + 4·61-s + 24·71-s − 16·79-s − 5·81-s − 12·89-s − 8·95-s + 12·101-s + 4·109-s − 22·121-s − 125-s + 127-s + 131-s + 137-s + 139-s − 12·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 2/3·9-s + 1.83·19-s + 1/5·25-s + 2.22·29-s + 1.43·31-s + 1.87·41-s + 0.298·45-s − 1.42·49-s − 3.12·59-s + 0.512·61-s + 2.84·71-s − 1.80·79-s − 5/9·81-s − 1.27·89-s − 0.820·95-s + 1.19·101-s + 0.383·109-s − 2·121-s − 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.996·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.156455752\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.156455752\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_1$ | \( 1 + T \) |
good | 3 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49081175144606776577808780778, −9.703656252458157439228300963800, −9.683565298540966130897522415203, −8.740293324354028093320034492248, −8.407676785947288187996164912905, −7.71273110823499542846308181544, −7.47121424818625422471458115292, −6.43307814142801241380910059979, −6.27087624192875571051851265258, −5.30602566274475700528497955431, −4.82118726362395324834121081499, −4.12250433368686324236236368171, −3.07875775618643284846845606551, −2.76929890617261215013507568311, −1.10363850080882238424508077779,
1.10363850080882238424508077779, 2.76929890617261215013507568311, 3.07875775618643284846845606551, 4.12250433368686324236236368171, 4.82118726362395324834121081499, 5.30602566274475700528497955431, 6.27087624192875571051851265258, 6.43307814142801241380910059979, 7.47121424818625422471458115292, 7.71273110823499542846308181544, 8.407676785947288187996164912905, 8.740293324354028093320034492248, 9.683565298540966130897522415203, 9.703656252458157439228300963800, 10.49081175144606776577808780778