L(s) = 1 | + 6·3-s + 12·5-s + 44·7-s + 27·9-s + 52·11-s − 26·13-s + 72·15-s − 20·17-s − 60·19-s + 264·21-s − 8·23-s + 30·25-s + 108·27-s + 132·29-s − 140·31-s + 312·33-s + 528·35-s + 68·37-s − 156·39-s + 28·41-s + 324·45-s + 36·47-s + 938·49-s − 120·51-s + 668·53-s + 624·55-s − 360·57-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.07·5-s + 2.37·7-s + 9-s + 1.42·11-s − 0.554·13-s + 1.23·15-s − 0.285·17-s − 0.724·19-s + 2.74·21-s − 0.0725·23-s + 6/25·25-s + 0.769·27-s + 0.845·29-s − 0.811·31-s + 1.64·33-s + 2.54·35-s + 0.302·37-s − 0.640·39-s + 0.106·41-s + 1.07·45-s + 0.111·47-s + 2.73·49-s − 0.329·51-s + 1.73·53-s + 1.52·55-s − 0.836·57-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(97344s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
338.876 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 97344, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
8.188521139 |
L(21) |
≈ |
8.188521139 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1−12T+114T2−12p3T3+p6T4 |
| 7 | D4 | 1−44T+998T2−44p3T3+p6T4 |
| 11 | C2 | (1−26T+p3T2)2 |
| 17 | D4 | 1+20T+9238T2+20p3T3+p6T4 |
| 19 | D4 | 1+60T+10318T2+60p3T3+p6T4 |
| 23 | D4 | 1+8T−418T2+8p3T3+p6T4 |
| 29 | D4 | 1−132T+28366T2−132p3T3+p6T4 |
| 31 | D4 | 1+140T+25782T2+140p3T3+p6T4 |
| 37 | D4 | 1−68T+68750T2−68p3T3+p6T4 |
| 41 | D4 | 1−28T+129610T2−28p3T3+p6T4 |
| 43 | C22 | 1+2914pT2+p6T4 |
| 47 | D4 | 1−36T+201778T2−36p3T3+p6T4 |
| 53 | D4 | 1−668T+406558T2−668p3T3+p6T4 |
| 59 | D4 | 1+508T+392026T2+508p3T3+p6T4 |
| 61 | D4 | 1−340T+471854T2−340p3T3+p6T4 |
| 67 | D4 | 1+940T+504398T2+940p3T3+p6T4 |
| 71 | D4 | 1−300T−57006T2−300p3T3+p6T4 |
| 73 | D4 | 1−1124T+1087686T2−1124p3T3+p6T4 |
| 79 | D4 | 1+1520T+1230686T2+1520p3T3+p6T4 |
| 83 | D4 | 1−524T+908810T2−524p3T3+p6T4 |
| 89 | D4 | 1−1900T+2312266T2−1900p3T3+p6T4 |
| 97 | D4 | 1+1436T+2285142T2+1436p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42214398917128688713621417985, −11.05144205561124725340267116979, −10.31194809942975245233471190816, −10.24788617272732909805315794294, −9.264813226358060540585988578082, −9.215669671319814268434114253472, −8.606010351118545401860918348051, −8.346252110582788825116967335954, −7.54957521691544461779378250866, −7.49378800629612049326858629046, −6.53715315204666169112077639816, −6.23805535267007924477684695878, −5.23710427814114969253752179319, −5.00426301943975155280014032240, −4.15952790984489884125185039394, −3.98523586614477440481232678366, −2.76919953794383634385098601660, −2.10695978885312781704145186954, −1.71775559267031069696382642172, −1.10022464665493037666502970190,
1.10022464665493037666502970190, 1.71775559267031069696382642172, 2.10695978885312781704145186954, 2.76919953794383634385098601660, 3.98523586614477440481232678366, 4.15952790984489884125185039394, 5.00426301943975155280014032240, 5.23710427814114969253752179319, 6.23805535267007924477684695878, 6.53715315204666169112077639816, 7.49378800629612049326858629046, 7.54957521691544461779378250866, 8.346252110582788825116967335954, 8.606010351118545401860918348051, 9.215669671319814268434114253472, 9.264813226358060540585988578082, 10.24788617272732909805315794294, 10.31194809942975245233471190816, 11.05144205561124725340267116979, 11.42214398917128688713621417985