Properties

Label 4-312e2-1.1-c3e2-0-1
Degree $4$
Conductor $97344$
Sign $1$
Analytic cond. $338.876$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 12·5-s + 44·7-s + 27·9-s + 52·11-s − 26·13-s + 72·15-s − 20·17-s − 60·19-s + 264·21-s − 8·23-s + 30·25-s + 108·27-s + 132·29-s − 140·31-s + 312·33-s + 528·35-s + 68·37-s − 156·39-s + 28·41-s + 324·45-s + 36·47-s + 938·49-s − 120·51-s + 668·53-s + 624·55-s − 360·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.07·5-s + 2.37·7-s + 9-s + 1.42·11-s − 0.554·13-s + 1.23·15-s − 0.285·17-s − 0.724·19-s + 2.74·21-s − 0.0725·23-s + 6/25·25-s + 0.769·27-s + 0.845·29-s − 0.811·31-s + 1.64·33-s + 2.54·35-s + 0.302·37-s − 0.640·39-s + 0.106·41-s + 1.07·45-s + 0.111·47-s + 2.73·49-s − 0.329·51-s + 1.73·53-s + 1.52·55-s − 0.836·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(338.876\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 97344,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.188521139\)
\(L(\frac12)\) \(\approx\) \(8.188521139\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
13$C_1$ \( ( 1 + p T )^{2} \)
good5$D_{4}$ \( 1 - 12 T + 114 T^{2} - 12 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 44 T + 998 T^{2} - 44 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 26 T + p^{3} T^{2} )^{2} \)
17$D_{4}$ \( 1 + 20 T + 9238 T^{2} + 20 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 60 T + 10318 T^{2} + 60 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 8 T - 418 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 132 T + 28366 T^{2} - 132 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 140 T + 25782 T^{2} + 140 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 68 T + 68750 T^{2} - 68 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 28 T + 129610 T^{2} - 28 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 2914 p T^{2} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 36 T + 201778 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 668 T + 406558 T^{2} - 668 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 508 T + 392026 T^{2} + 508 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 340 T + 471854 T^{2} - 340 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 940 T + 504398 T^{2} + 940 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 300 T - 57006 T^{2} - 300 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 1124 T + 1087686 T^{2} - 1124 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 1520 T + 1230686 T^{2} + 1520 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 524 T + 908810 T^{2} - 524 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1900 T + 2312266 T^{2} - 1900 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 1436 T + 2285142 T^{2} + 1436 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42214398917128688713621417985, −11.05144205561124725340267116979, −10.31194809942975245233471190816, −10.24788617272732909805315794294, −9.264813226358060540585988578082, −9.215669671319814268434114253472, −8.606010351118545401860918348051, −8.346252110582788825116967335954, −7.54957521691544461779378250866, −7.49378800629612049326858629046, −6.53715315204666169112077639816, −6.23805535267007924477684695878, −5.23710427814114969253752179319, −5.00426301943975155280014032240, −4.15952790984489884125185039394, −3.98523586614477440481232678366, −2.76919953794383634385098601660, −2.10695978885312781704145186954, −1.71775559267031069696382642172, −1.10022464665493037666502970190, 1.10022464665493037666502970190, 1.71775559267031069696382642172, 2.10695978885312781704145186954, 2.76919953794383634385098601660, 3.98523586614477440481232678366, 4.15952790984489884125185039394, 5.00426301943975155280014032240, 5.23710427814114969253752179319, 6.23805535267007924477684695878, 6.53715315204666169112077639816, 7.49378800629612049326858629046, 7.54957521691544461779378250866, 8.346252110582788825116967335954, 8.606010351118545401860918348051, 9.215669671319814268434114253472, 9.264813226358060540585988578082, 10.24788617272732909805315794294, 10.31194809942975245233471190816, 11.05144205561124725340267116979, 11.42214398917128688713621417985

Graph of the $Z$-function along the critical line