Properties

Label 4-3120e2-1.1-c1e2-0-28
Degree $4$
Conductor $9734400$
Sign $1$
Analytic cond. $620.673$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 9-s + 6·11-s − 8·19-s − 25-s − 16·29-s − 8·31-s − 10·41-s + 2·45-s + 13·49-s − 12·55-s − 24·59-s − 30·61-s + 30·71-s − 10·79-s + 81-s − 10·89-s + 16·95-s − 6·99-s + 20·101-s − 8·109-s + 5·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.894·5-s − 1/3·9-s + 1.80·11-s − 1.83·19-s − 1/5·25-s − 2.97·29-s − 1.43·31-s − 1.56·41-s + 0.298·45-s + 13/7·49-s − 1.61·55-s − 3.12·59-s − 3.84·61-s + 3.56·71-s − 1.12·79-s + 1/9·81-s − 1.05·89-s + 1.64·95-s − 0.603·99-s + 1.99·101-s − 0.766·109-s + 5/11·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9734400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9734400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9734400\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(620.673\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 9734400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
13$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.584567358182662148317822308148, −8.207893861561208731284827181138, −7.56954127951197732635338175233, −7.42710962902836852653270993867, −7.20668637132121573682551632286, −6.52823676305371814018197587750, −6.18000428276478447941922373936, −6.07631461952564990074646328580, −5.46514355964137502655914572601, −5.01758163415353955326031926055, −4.43089147607242561421229635600, −4.14884612689699300760991820869, −3.65174825085545839842790305822, −3.61599543221952994061732458542, −2.98626232723233596923955245353, −2.08151118744873257016832198578, −1.84458198943444922102874482455, −1.31470857058652956061762040967, 0, 0, 1.31470857058652956061762040967, 1.84458198943444922102874482455, 2.08151118744873257016832198578, 2.98626232723233596923955245353, 3.61599543221952994061732458542, 3.65174825085545839842790305822, 4.14884612689699300760991820869, 4.43089147607242561421229635600, 5.01758163415353955326031926055, 5.46514355964137502655914572601, 6.07631461952564990074646328580, 6.18000428276478447941922373936, 6.52823676305371814018197587750, 7.20668637132121573682551632286, 7.42710962902836852653270993867, 7.56954127951197732635338175233, 8.207893861561208731284827181138, 8.584567358182662148317822308148

Graph of the $Z$-function along the critical line