Properties

Label 4-30e4-1.1-c1e2-0-20
Degree $4$
Conductor $810000$
Sign $1$
Analytic cond. $51.6463$
Root an. cond. $2.68077$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 10·13-s − 4·16-s − 6·17-s + 20·26-s + 8·32-s + 12·34-s − 10·37-s − 20·41-s − 20·52-s − 18·53-s − 24·61-s − 8·64-s − 12·68-s + 10·73-s + 20·74-s + 40·82-s + 10·97-s − 40·101-s + 36·106-s − 2·113-s + 22·121-s + 48·122-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 2.77·13-s − 16-s − 1.45·17-s + 3.92·26-s + 1.41·32-s + 2.05·34-s − 1.64·37-s − 3.12·41-s − 2.77·52-s − 2.47·53-s − 3.07·61-s − 64-s − 1.45·68-s + 1.17·73-s + 2.32·74-s + 4.41·82-s + 1.01·97-s − 3.98·101-s + 3.49·106-s − 0.188·113-s + 2·121-s + 4.34·122-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(810000\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(51.6463\)
Root analytic conductor: \(2.68077\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 810000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + p^{2} T^{4} \)
47$C_2^2$ \( 1 + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.809557666520366206216013992943, −9.435440952400528170353968722114, −9.186724986667811342583561262920, −8.740684199921409949362986918029, −8.150510840664915966133309281949, −7.992170970525122414646606191428, −7.24109136764166332693137310690, −7.22436923353086673792232802017, −6.55021710883288555029662046831, −6.45668935810405568703703915054, −5.38149730833813431252255983187, −4.85877680597085279192579707665, −4.81986722401855268615176217231, −4.12943534469073737174593173363, −3.17366072807781605341602982591, −2.75003568732305774571797246523, −1.86795042852037103120141142895, −1.75493628035455789074361619706, 0, 0, 1.75493628035455789074361619706, 1.86795042852037103120141142895, 2.75003568732305774571797246523, 3.17366072807781605341602982591, 4.12943534469073737174593173363, 4.81986722401855268615176217231, 4.85877680597085279192579707665, 5.38149730833813431252255983187, 6.45668935810405568703703915054, 6.55021710883288555029662046831, 7.22436923353086673792232802017, 7.24109136764166332693137310690, 7.992170970525122414646606191428, 8.150510840664915966133309281949, 8.740684199921409949362986918029, 9.186724986667811342583561262920, 9.435440952400528170353968722114, 9.809557666520366206216013992943

Graph of the $Z$-function along the critical line