Properties

Label 4-304e2-1.1-c6e2-0-0
Degree $4$
Conductor $92416$
Sign $1$
Analytic cond. $4891.10$
Root an. cond. $8.36280$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 54·5-s + 610·7-s + 1.45e3·9-s − 1.06e3·11-s + 9.63e3·17-s + 1.37e4·19-s − 4.12e4·23-s + 1.56e4·25-s + 3.29e4·35-s − 1.42e5·43-s + 7.87e4·45-s − 7.51e4·47-s + 1.17e5·49-s − 5.73e4·55-s + 5.70e4·61-s + 8.89e5·63-s − 3.84e5·73-s − 6.47e5·77-s + 1.59e6·81-s + 2.26e6·83-s + 5.20e5·85-s + 7.40e5·95-s − 1.54e6·99-s + 4.12e6·101-s − 2.22e6·115-s + 5.87e6·119-s + 1.77e6·121-s + ⋯
L(s)  = 1  + 0.431·5-s + 1.77·7-s + 2·9-s − 0.797·11-s + 1.96·17-s + 2·19-s − 3.38·23-s + 25-s + 0.768·35-s − 1.79·43-s + 0.863·45-s − 0.723·47-s + 49-s − 0.344·55-s + 0.251·61-s + 3.55·63-s − 0.987·73-s − 1.41·77-s + 3·81-s + 3.95·83-s + 0.846·85-s + 0.863·95-s − 1.59·99-s + 3.99·101-s − 1.46·115-s + 3.48·119-s + 121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92416 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(92416\)    =    \(2^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(4891.10\)
Root analytic conductor: \(8.36280\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 92416,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(6.980929586\)
\(L(\frac12)\) \(\approx\) \(6.980929586\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 - p^{3} T )^{2} \)
good3$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
5$C_2^2$ \( 1 - 54 T - 12709 T^{2} - 54 p^{6} T^{3} + p^{12} T^{4} \)
7$C_2^2$ \( 1 - 610 T + 254451 T^{2} - 610 p^{6} T^{3} + p^{12} T^{4} \)
11$C_2^2$ \( 1 + 1062 T - 643717 T^{2} + 1062 p^{6} T^{3} + p^{12} T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
17$C_2^2$ \( 1 - 9630 T + 68599331 T^{2} - 9630 p^{6} T^{3} + p^{12} T^{4} \)
23$C_2$ \( ( 1 + 20610 T + p^{6} T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
43$C_2^2$ \( 1 + 142630 T + 14021953851 T^{2} + 142630 p^{6} T^{3} + p^{12} T^{4} \)
47$C_2^2$ \( 1 + 75150 T - 5131692829 T^{2} + 75150 p^{6} T^{3} + p^{12} T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
61$C_2^2$ \( 1 - 57062 T - 48264302517 T^{2} - 57062 p^{6} T^{3} + p^{12} T^{4} \)
67$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
73$C_2^2$ \( 1 + 384050 T - 3839823789 T^{2} + 384050 p^{6} T^{3} + p^{12} T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
83$C_2$ \( ( 1 - 1131030 T + p^{6} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74751116846268358299634491900, −10.24570070772479838333031863155, −10.01162813067965740193671847386, −9.840689802201950905164466409692, −9.156691717379835533965203016662, −8.258658197847586147636029071413, −7.87533551881260985536524022590, −7.74581617009666701658670766252, −7.32296918580557159272536457028, −6.55532881516015027762061194481, −5.87302911062769265082332620743, −5.37153054498495259781864710926, −4.78964074962069973759460246322, −4.65788005593126897566070664373, −3.62243791744147743173623610779, −3.35920799227001125258870102661, −2.06951474335476487375749833703, −1.80929623559780080515127044967, −1.24484335328824013542240165516, −0.68362252089575950191616901191, 0.68362252089575950191616901191, 1.24484335328824013542240165516, 1.80929623559780080515127044967, 2.06951474335476487375749833703, 3.35920799227001125258870102661, 3.62243791744147743173623610779, 4.65788005593126897566070664373, 4.78964074962069973759460246322, 5.37153054498495259781864710926, 5.87302911062769265082332620743, 6.55532881516015027762061194481, 7.32296918580557159272536457028, 7.74581617009666701658670766252, 7.87533551881260985536524022590, 8.258658197847586147636029071413, 9.156691717379835533965203016662, 9.840689802201950905164466409692, 10.01162813067965740193671847386, 10.24570070772479838333031863155, 10.74751116846268358299634491900

Graph of the $Z$-function along the critical line